Polydispersed Bubbly Flow Model for Ship Hydrodynamics with Application to Athena R/V

Total Page:16

File Type:pdf, Size:1020Kb

Polydispersed Bubbly Flow Model for Ship Hydrodynamics with Application to Athena R/V - Polydispersed bubbly flow model for ship hydrodynamics with application to Athena R/V Castro, Alejandro Miguel https://iro.uiowa.edu/discovery/delivery/01IOWA_INST:ResearchRepository/12730672190002771?l#13730783560002771 Castro, A. M. (2014). Polydispersed bubbly flow model for ship hydrodynamics with application to Athena R/V [University of Iowa]. https://doi.org/10.17077/etd.2p94jdnz https://iro.uiowa.edu Copyright 2011 Alejandro Miguel Castro Downloaded on 2021/09/27 18:24:16 -0500 - POLYDISPERSED BUBBLY FLOW MODEL FOR SHIP HYDRODYNAMICS WITH APPLICATION TO ATHENA R/V by Alejandro Miguel Castro An Abstract Of a thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Mechanical Engineering in the Graduate College of The University of Iowa December 2011 Thesis Supervisor: Associate Professor Pablo M. Carrica 1 ABSTRACT Bubbly flows around ships have been studied for years, mostly in relation with ship acoustic signatures. Bubbles are generated at the bow and shoulder breaking waves, at the hull/free surface contact line, the propeller and the highly turbulent stern flow. These bubbles are further transported downstream by the flow forming a two-phase mixture in the wake that can be kilometers long. The presence of bubbles in the wake of a ship significantly affects the acoustic response of the medium and can be detected by measuring acoustic attenuation and backscattering making a ship vulnerable to detection. Additionally, the bubbly wake shows at the surface as a characteristic signature of white water, and given the length of the bubbly wake, it makes a ship visible from satellites. Therefore, the bubbly wake can be used to detect and identify surface ships. Bubbly flows do not scale to model scale experiments, and experiments on full scale ships are scarce mostly due to difficult access areas and the high speeds involved. It is therefore of interest to simulate the bubbly flow around ships to provide information difficult, if not impossible, to obtain with experiments. This work presents the development of a code for the simulation of polydis- persed bubbly flows with a focus on ship hydrodynamics. The mathematical model implemented is based on a two-fluid formulation coupled with a Boltzmann-like transport equation describing the bubbly phase. The tool developed attempts to include most of the relevant physics of the problem to represent better the condi- tions of real scenarios. The resulting code allows the simulation of polydispersed bubbly flows in situations including free surface and air entrainment, high void fraction levels and moving control surfaces and propulsors. The code is two-way coupled, with a strong coupling between the two phases and between the bubble sizes. The complexity of the problems tackled in this research required the develop- 2 ment of novel numerical methods solving issues never identified before or simply neglected. These methods play an essential role in the accuracy, robustness and efficiency of the code and include: a two-phase projection method that not only couples pressure and velocity but also implicitly couples void fraction, a time split- ting marching scheme to solve separately coupling in space and in bubble sizes, and a stable numerical method to integrate the strong coupling introduced by collision forces. The implemented code is applied to the simulation of the bubbly flow around a full scale ship using the latest available models and computational techniques. A study is performed on the influence of several mechanisms on the predicted bubbly wake and comparisons with available experimental data are presented. The influence of breakup in the boundary layer is analyzed in detail as well. In addition, this work identifies several modeling and implementations issues and attempts to provide a path for future studies. To illustrate the flexibility and robustness of the code, a final demonstration case is presented that includes rotating propellers. The computation is performed at full scale, with the fully appended geometry of the vessel and includes incoming waves, oceanic background and rectified diffusion models. Many of these features are unique to this computation and make it the first of its kind. Abstract Approved: Thesis Supervisor Title and Department Date POLYDISPERSED BUBBLY FLOW MODEL FOR SHIP HYDRODYNAMICS WITH APPLICATION TO ATHENA R/V by Alejandro Miguel Castro A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Mechanical Engineering in the Graduate College of The University of Iowa December 2011 Thesis Supervisor: Associate Professor Pablo M. Carrica Graduate College The University of Iowa Iowa City, Iowa CERTIFICATE OF APPROVAL PH.D. THESIS This is to certify that the Ph.D. thesis of Alejandro Miguel Castro has been approved by the Examining Committee for the thesis requirement for the Doctor of Philosophy degree in Mechanical Engineering at the December 2011 graduation. Thesis Committee: Pablo M. Carrica, Thesis Supervisor Christoph Beckermann Mark Hyman Frederick Stern H.S. Udaykumar To my parents and sister ii ACKNOWLEDGEMENTS First and foremost, I owe my deepest gratitude to my thesis supervisor Pablo M. Carrica, whose constant support helped me along my journey. Pablo, thank you for your guidance, encouragement, critique (lots of it) and, most of all, your friendship. Thank you for your constant and virtually endless willingness to teach and stimulate my imagination. I feel immensely fortunate for having had you as my thesis supervisor and I am deeply grateful for the lessons you have taught me not only on a professional level, but also on a personal level. I am also very grateful to Marcela Politano, Pablo’s wife, who would come downstairs to my cubicle to provide me with warm and calming words in times of deadlines when I was about to loose it. I also had the chance to professionally interact with Marcela and I can say that those interactions were very beneficial and influential for my education. I would like to specially thank Dr. Mark Hyman, the first user of our code, for his suggestions, comments, useful discussions and for providing the geometry for Athena’s propeller. Dr. Hyman traveled from Pasadena, CA to Iowa City not only for my final PhD defense but also for my comprehensive examination. I know how busy his schedule is and therefore I am very grateful for this. I am grateful to my thesis committee members, who took time out of their busy schedule to review my thesis and provided helpful suggestions and advice. This work was sponsored by the US Office of Naval Research grant N00014-08- 1-1084, under the administration of Dr. Patrick Purtell whose support is greatly appreciated. iii TABLE OF CONTENTS LIST OF TABLES . vii LIST OF FIGURES . viii CHAPTER 1 INTRODUCTION . 1 1.1 Background . 1 1.2 Bubbly Flow Around Ships . 2 1.3 Computational Ship Hydrodynamics . 4 1.4 Models and Numerical Methods for Two-Phase Flows . 4 1.5 Contribution of this Thesis . 11 2 MATHEMATICAL DESCRIPTION OF POLYDISPERSED FLOWS . 16 2.1 The Boltzmann Equation . 19 2.2 Multigroup Approach . 23 2.3 Intergroup Transfer Discretization . 26 2.3.1 Breakup . 28 2.3.2 Coalescence . 36 2.3.3 Dissolution . 41 2.3.4 Full System of Equations . 45 2.4 Derived Quantities . 46 2.4.1 Integral Quantities . 46 2.4.2 Size Distributions . 48 2.4.3 Intergroup Transfer Budget . 49 2.4.4 Intergroup Transfer Frequencies . 52 3 POLYDISPERSED BUBBLY FLOW MODEL . 54 3.1 Two Fluid Model . 55 3.1.1 Dispersed Phase . 56 3.1.2 Jump Conditions . 58 3.1.3 Continuous Phase . 59 3.1.4 Interfacial Forces . 61 3.1.5 Bubble Radius . 73 3.2 Coalescence Modeling . 75 3.2.1 Model of Prince and Blanch . 77 3.2.2 Model of Lehr et al. 81 3.3 Breakup Modeling . 81 3.3.1 Turbulence Induced Breakup . 82 iv 3.3.2 Viscous Shear Breakup . 89 3.4 Dissolution . 92 3.5 Modeling Considerations for Sea Water . 94 3.6 Turbulence Modeling . 97 3.7 Free Surface Tracking: Single Phase Level Set . 99 3.8 Entrainment Modeling . 100 3.9 Oceanic Background . 104 3.10 Bubble Growth by Rectified Diffusion . 106 3.10.1 Discrete Form . 109 3.10.2 Limitations and Known Problems of the Model . 112 3.11 Dimensionless Equations . 113 4 NUMERICAL METHODS AND IMPLEMENTATION . 118 4.1 CFDShip-Iowa V4.5 . 119 4.2 Time Splitting . 120 4.2.1 The Problem . 120 4.2.2 The Proposed Solution . 123 4.2.3 Guaranteeing Mass Conservation . 127 4.2.4 Solving the Intergroup Transfer System . 128 4.2.5 Full Dispersed Phase Solver . 129 4.3 Global Coupling Strategy . 129 4.4 Pressure-Velocity Coupling . 132 4.4.1 Scheme I . 133 4.4.2 Scheme II . 135 4.4.3 Example Case: Self-Propelled Athena with Heading Waves . 139 4.5 Dispersed Phase Momentum Equation . 141 4.6 Number Density Transport . 143 4.6.1 Near Wall Integration . 144 4.7 Air Entrainment Source Integration . 148 4.8 Treatment of Forces with Number Density Gradients . 152 4.8.1 1D Test Case . 155 4.8.2 Implementation in CFDShip-Iowa V4.5 . 158 5 POLYDISPERSED MODEL VALIDATION . 161 5.1 Study Case . 162 5.2 Convergence Study . 165 5.3 Dependence with the Initial Conditions . 168 5.4 Comparison with Previous Works . 169 5.5 Prince and Blanch Coalescence Kernel . 171 5.6 Luo and Svendsen Breakup Kernel . 175 5.7 Salt Water . 179 v 6 ATHENA R/V ................................183 6.1 Summary of Experiments . 184 6.2 Geometry and Grids . 186 6.3 Conditions Used in the Simulations . 189 6.4 Breakup in Athena’s Boundary Layer . 190 6.4.1 Frictional Resistance and Wall Shear Stress .
Recommended publications
  • Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite
    46th AIAA Aerospace Sciences Meeting and Exhibit AIAA 2008-1131 7 – 10 January 20006, Reno, Nevada Launch and Deployment Analysis for a Small, MEO, Technology Demonstration Satellite Stephen A. Whitmore* and Tyson K. Smith† Utah State University, Logan, UT, 84322-4130 A trade study investigating the economics, mass budget, and concept of operations for delivery of a small technology-demonstration satellite to a medium-altitude earth orbit is presented. The mission requires payload deployment at a 19,000 km orbit altitude and an inclination of 55o. Because the payload is a technology demonstrator and not part of an operational mission, launch and deployment costs are a paramount consideration. The payload includes classified technologies; consequently a USA licensed launch system is mandated. A preliminary trade analysis is performed where all available options for FAA-licensed US launch systems are considered. The preliminary trade study selects the Orbital Sciences Minotaur V launch vehicle, derived from the decommissioned Peacekeeper missile system, as the most favorable option for payload delivery. To meet mission objectives the Minotaur V configuration is modified, replacing the baseline 5th stage ATK-37FM motor with the significantly smaller ATK Star 27. The proposed design change enables payload delivery to the required orbit without using a 6th stage kick motor. End-to-end mass budgets are calculated, and a concept of operations is presented. Monte-Carlo simulations are used to characterize the expected accuracy of the final orbit.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Space Almanac 2007
    2007 Space Almanac The US military space operation in facts and figures. Compiled by Tamar A. Mehuron, Associate Editor, and the staff of Air Force Magazine 74 AIR FORCE Magazine / August 2007 Space 0.05g 60,000 miles Geosynchronous Earth Orbit 22,300 miles Hard vacuum 1,000 miles Medium Earth Orbit begins 300 miles 0.95g 100 miles Low Earth Orbit begins 60 miles Astronaut wings awarded 50 miles Limit for ramjet engines 28 miles Limit for turbojet engines 20 miles Stratosphere begins 10 miles Illustration not to scale Artist’s conception by Erik Simonsen AIR FORCE Magazine / August 2007 75 US Military Missions in Space Space Support Space Force Enhancement Space Control Space Force Application Launch of satellites and other Provide satellite communica- Ensure freedom of action in space Provide capabilities for the ap- high-value payloads into space tions, navigation, weather infor- for the US and its allies and, plication of combat operations and operation of those satellites mation, missile warning, com- when directed, deny an adversary in, through, and from space to through a worldwide network of mand and control, and intel- freedom of action in space. influence the course and outcome ground stations. ligence to the warfighter. of conflict. US Space Funding Millions of constant Fiscal 2007 dollars 60,000 50,000 40,000 30,000 20,000 10,000 0 Fiscal Year 59 62 65 68 71 74 77 80 83 86 89 92 95 98 01 04 Fiscal Year NASA DOD Other Total Fiscal Year NASA DOD Other Total 1959 1,841 3,457 240 5,538 1983 13,051 18,601 675 32,327 1960 3,205 3,892
    [Show full text]
  • The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
    Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery,
    [Show full text]
  • N AS a Facts
    National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program (LSP) manufacturing, launch operations and rockets for launching Earth-orbit and Twas established at Kennedy Space countdown management, and providing interplanetary missions. Center for NASA’s acquisition and added quality and mission assurance in In September 2010, NASA’s Launch program management of expendable lieu of the requirement for the launch Services (NLS) contract was extended launch vehicle (ELV) missions. A skillful service provider to obtain a commercial by the agency for 10 years, through NASA/contractor team is in place to launch license. 2020, with the award of four indefinite meet the mission of the Launch Ser- Primary launch sites are Cape Canav- delivery/indefinite quantity contracts. The vices Program, which exists to provide eral Air Force Station (CCAFS) in Florida, expendable launch vehicles that NASA leadership, expertise and cost-effective and Vandenberg Air Force Base (VAFB) has available for its science, Earth-orbit services in the commercial arena to in California. and interplanetary missions are United satisfy agencywide space transporta- Other launch locations are NASA’s Launch Alliance’s (ULA) Atlas V and tion requirements and maximize the Wallops Flight Facility in Virginia, the Delta II, Space X’s Falcon 1 and 9, opportunity for mission success. Kwajalein Atoll in the South Pacific’s Orbital Sciences Corp.’s Pegasus and facts The principal objectives of the LSP Republic of the Marshall Islands, and Taurus XL, and Lockheed Martin Space are to provide safe, reliable, cost-effec- Kodiak Island in Alaska. Systems Co.’s Athena I and II.
    [Show full text]
  • Launch and Deployment Analysis for a Small, MEO, Technology
    Launch and Deployment Analysis for a Isp = specific impulse, sec Small, MEO, Technology Demonstration k = spring constant, Nt/mm KLC = Kodiak Island Launch Complex Satellite MTO = medium transfer orbit transfer orbit 1 LEO = low earth orbit Tyson Karl Smith 2 LMA = Lockheed Martin Aerospace Stephen Anthony Whitmore M = final mass after insertion burn, kg Utah State University, Logan, UT, 84322-4130 final Mpayload = mass of payload after kick motor jettison, kg A trade study investigation the possibilities of delivering M = propellant mass consumed during a small technology-demonstration satellite to a medium prop earth orbit are presented. The satellite is to be deployed insertion burn, kg in a 19,000 km orbit with an inclination of 55°. This Mstage = mass of expended stage after jettison, payload is a technology demonstrator and thus launch kg and deployment costs are a paramount consideration. NRE = non-recurrent engineering, kg Also the payload includes classified technology, thus a Nspring = number of springs in Lightband® USA licensed launch system is mandated. All FAA- separation system licensed US launch systems are considered during a MTO = MEO transfer orbit preliminary trade analysis. This preliminary trade OSC = Orbital Sciences Corporation analysis selects Orbital Sciences Minotaur V launch R = apogee radius, km vehicle. To meet mission objective the Minotaur V 5th a stage ATK-Star 37FM motor is replaced with the Rp = perigee radius, km smaller ATK- Star 27. This new configuration allows R⊕ = local earth radius, km for payload delivery without adding an additional 6th SDL = Space Dynamics Laboratory stage kick motor. End-to-end mass budgets are SLV = space launch vehicle calculated, and a concept of operations is presented.
    [Show full text]
  • Orbital Rendezvous Using an Augmented Lambert Guidance Scheme By
    Orbital Rendezvous Using an Augmented Lambert Guidance Scheme by Sara Jean MacLellan B.S. Aerospace Engineering Embry-Riddle Aeronautical University, 2003 SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2005 @ 2005 Sara Jean MacLellan. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author: Department of Aeronautics and Astronautics May 06, 2005 Certified by: V Andrew Staugler Senior Member of the Technical Staff The Charles Stark Draper Laboratory, Inc. Technical Advisor Accepted by: Richard H. Battin, Ph.D. Senior Lecturer of Aeronautics and Astronautics Thesis Supervisor Accepted bv Jaime Peraire, Ph.D. MASSACHUSS INS E Professor of Aeronautics and Astronautics OF TECHNOLOGY Chair, Committee on Graduate Students DEC 1E2005 LIBRARIES AERO I [This page intentionally left blank.] 40600 Orbital Rendezvous Using an Augmented Lambert Guidance Scheme by Sara Jean MacLellan Submitted to the Department of Aeronautics and Astronautics on May 06, 2005, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract The development of an Augmented Lambert Guidance Algorithm that matches the po- sition and velocity of an orbiting target spacecraft is presented in this thesis. The Aug- mented Lambert Guidance Algorithm manipulates the inputs given to a preexisting Lam- bert guidance algorithm to control the boost of a launch vehicle, or chaser, from the surface of the Earth to a transfer trajectory enroute to the aim point.
    [Show full text]
  • Athena Launch Vehicle Family
    TM APPROVED FOR PUBLIC RELEASE Copyright © 2014 by Lockheed Martin Corporation, All Rights Reserved. 1 Athena Launch Vehicle Family The Athena Program consists of a modular family of launch vehicles based on solid rocket motor (SRM) main propulsion. The Athena family is commercially developed by LM , ATK (Athena teammate) & subcontractors Athena has flown 7 times with 5 successes, from 3 different launch locations: • Kodiak Launch Complex, AK: Highly Inclined orbits (1 launch) – (active) • Vandenberg Air Force Base, CA: Highly Inclined orbits (4 launches) – (retired) • Cape Canaveral Air Force Station, FL: Low Inclined orbits (2 launches) – (active) Athena launches are performed from commercially leased facilities under fixed price contracts – the Athena Program does not own or maintain the launch complexes – however, they are rarely used by other launch vehicles. The Athena Program consists 4 basic configurations, of which 2 have flown: • Athena Ic: Very Small Payloads ~300kg to SSO (4 flights) • Athena IIc: Small Payloads ~1000kg to SSO (3 flights) • Athena IIS: Medium Lite Payloads ~1400kg - 3000kg to SSO (Development Required) • Athena III: Medium Payloads ~4300kg to SSO (Development Required) 2 Expanded Athena Launch Vehicle Family Athena III Athena IIS-2/4/6 Athena IIc Athena Athena Ic Model 165 PLF Common Model 120 PLF (4.2m) Model 92 PLF (3.1m) Core (2.3m) OAM Castor 30 UIS Castor 120 LIS LIS CLIS Castor 120 Castor 120 Castor 900 PLF – Payload Fairing OAM – Orbit Adjust Module DM – Dual Mode (Bi-Propellant) Orion 50SXLG UIS – Upper
    [Show full text]
  • Information Summary Assurance in Lieu of the Requirement for the Launch Service Provider Apollo Spacecraft to the Moon
    National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program was established for mission success. at Kennedy Space Center for NASA’s acquisi- The principal objectives are to provide safe, reli- tion and program management of Expendable able, cost-effective and on-schedule processing, mission TLaunch Vehicle (ELV) missions. A skillful NASA/ analysis, and spacecraft integration and launch services contractor team is in place to meet the mission of the for NASA and NASA-sponsored payloads needing a Launch Services Program, which exists to provide mission on ELVs. leadership, expertise and cost-effective services in the The Launch Services Program is responsible for commercial arena to satisfy Agencywide space trans- NASA oversight of launch operations and countdown portation requirements and maximize the opportunity management, providing added quality and mission information summary assurance in lieu of the requirement for the launch service provider Apollo spacecraft to the Moon. to obtain a commercial launch license. The powerful Titan/Centaur combination carried large and Primary launch sites are Cape Canaveral Air Force Station complex robotic scientific explorers, such as the Vikings and Voyag- (CCAFS) in Florida, and Vandenberg Air Force Base (VAFB) in ers, to examine other planets in the 1970s. Among other missions, California. the Atlas/Agena vehicle sent several spacecraft to photograph and Other launch locations are NASA’s Wallops Island flight facil- then impact the Moon. Atlas/Centaur vehicles launched many of ity in Virginia, the North Pacific’s Kwajalein Atoll in the Republic of the larger spacecraft into Earth orbit and beyond. the Marshall Islands, and Kodiak Island in Alaska.
    [Show full text]
  • Athena Mission Planner’S Guide (MPG)
    Athena Mission Planner’s Guide (MPG) Release Date Date – –2326 January August 2012 2011 Published by: Athena Mission Planner’s Guide FOREWORD January 2012 This Athena Mission Planner’s Guide presents information regarding the Athena Launch Vehicle and related launch services. A range of vehicle configurations and performance capabilities are offered to allow optimum match to customer requirements at low cost. Information is presented in sufficient detail for preliminary assessment of the Athena family for your missions. This guide includes essential technical and programmatic information for preliminary mission planning and preliminary spacecraft design. Athena performance capability, environments and interfaces are described in sufficient detail to assess a first-order compatibility. A description of the spacecraft processing and launch facilities at our launch sites is also included. This guide also describes the operations and hardware flow for the spacecraft and launch vehicle leading to encapsulation, spacecraft mating and launch. This guide is subject to change and will be revised periodically. For inquiries, contact: Gregory J. Kehrl Athena Mission Manager Telephone: (303) 977-0310 Fax: (303) 971-3748 E-mail: [email protected] Postal Address: Lockheed Martin Space Systems Company P.O. Box 179 Denver, CO 80201-0179 MS H3005 Street Address: Lockheed Martin Space Systems Company 12257 S. Wadsworth Blvd. Littleton, CO 80125 MS H3005 i Athena Mission Planner’s Guide TABLE OF CONTENTS 1.0 INTRODUCTION ..............................................................................................................
    [Show full text]
  • Impact of Rocket Exhaust Plumes on Atmospheric Composition and Climate ¡ an Overview
    IMPACT OF ROCKET EXHAUST PLUMES ON ATMOSPHERIC COMPOSITION AND CLIMATE ¡ AN OVERVIEW Ch. Voigt1,2, U. Schumann1, K. Graf1, and K.-D. Gottschaldt1 1Deutsches Zentrum fur Luft- und Raumfahrt (DLR) Institut fur Physik der Atmosphare Oberpfa¨enhofen, Wessling 82234, Germany 2Johannes-Gutenberg-Universitat Mainz Institut fur Physik der Atmosphare 21 Johannes-Joachim-Becher-Weg, Mainz 55099, Germany Rockets are the only direct anthropogenic emission sources into the up- per atmosphere. Gaseous rocket emissions include CO, N2, H2, H2O, and CO2, while solid rocket motors (SRM) additionally inject signi¦- cant amounts of aluminum oxide (Al2O3) particles and gaseous chlorine species into the atmosphere. These emissions strongly perturb local at- mospheric trace gas and aerosol distributions. Here, the previous aircraft measurements in various rocket exhaust plumes including several large space shuttle launch vehicles are compiled. The observed changes of the lower stratospheric composition in the near ¦eld are summarized. The injection of chlorine species and particles into the stratosphere can lead to ozone loss in rocket exhaust plumes. Local observations are compared with global model simulations of the e¨ects of rocket emissions on strato- spheric ozone concentrations. Large uncertainties remain concerning in- dividual ozone loss reaction rates and the impact of small-scale plume e¨ects on global chemistry. Further, remote sensing data from satellite indicate that rocket exhaust plumes regionally increase iron and water vapor concentrations in the mesosphere potentially leading to the forma- tion of mesospheric clouds at 80- to 90-kilometer altitude. These satellite observations are summarized and the rocket emission inventory is com- pared with other natural and anthropogenic sources to the stratosphere such as volcanism, meteoritic material, and aviation.
    [Show full text]
  • Cubesat Payload Accommodations and Propulsive Adapters 11Th Annual Cubesat Developer’S Workshop 25 April 2014 Joe Maly [email protected] Agenda
    Moog CSA Engineering CubeSat Payload Accommodations and Propulsive Adapters 11th Annual CubeSat Developer’s Workshop 25 April 2014 Joe Maly [email protected] Agenda • CubeSat “Wafer” adapters for small launch vehicles – CubeStack launched on Minotaur I ORS-3 – NASA NLAS adapter manifested on Super Strypi ORS-4 • FANTM-RiDE CubeSat rideshares • ESPA 6U Mount • CubeSat deployment sequencer • CubeSat propulsion – Controlled re-startable solids from DSSP • Propulsive adapters – CubeSat delivery stages built on CubeStack and ESPA 1 11th Annual CubeSat Workshop 25 April 2014 CubeSat “Wafer” Adapters • Steve Buckley “wafer” configuration pioneered by NASA Ames with NanoSat Launch Adapter System (NLAS) – 25.4 cm (10 inches) tall with 986-mm (38.81-inch) primary interface – Accommodates dispensers for up to eight 3U equivalent cubesats in combinations of 3U and 6U • Configured for cubesat deployments in two directions only – All deployed satellites remain in same orbit – Radial and anti-radial maneuvers coupled with out-of-plane maneuver allow clustering of payloads to reduce risk of re-contact with primary payload and rocket body 2 11th Annual CubeSat Workshop 25 April 2014 CubeStack CubeSat adapter developed by LoadPath and Moog CSA under contract to AFRL Space Vehicles Directorate • Eight 3Us, or four 6Us, or combinations of 3Us and 6Us • Qualified by test in 2011 3 11th Annual CubeSat Workshop 25 April 2014 CubeStack Maiden Launch Dual CubeStack launched on ORS-3 November 19, 2013 • “Enabler Mission” delivered payload stack consisting of STPSat-3,
    [Show full text]