Market Sharing Games Applied to Content Distribution in Ad Hoc Networks Michel X

Total Page:16

File Type:pdf, Size:1020Kb

Market Sharing Games Applied to Content Distribution in Ad Hoc Networks Michel X 1020 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 5, MAY 2006 Market Sharing Games Applied to Content Distribution in Ad Hoc Networks Michel X. Goemans, Li (Erran) Li, Vahab S. Mirrokni, and Marina Thottan, Member, IEEE Abstract—In third-generation (3G) wireless data networks, re- I. INTRODUCTION peated requests for popular data items can exacerbate the already scarce wireless spectrum. In this paper, we propose an architec- HIRD-GENERATION (3G) wide-area wireless networks tural and protocol framework that allows 3G service providers to T have recently experienced tremendous growth, with the host efficient content distribution services. We offload the spec- number of subscribers reaching more than 70 million world- trum intensive task of content distribution to an ad hoc network. wide [1]. Many 3G service providers have started offering con- Less mobile users (resident subscribers) are provided incentives to tent-rich services such as sports replays, news headlines, music cache popular data items, while mobile users (transit subscribers) access this data from resident subscribers through the ad hoc net- videos, and movie trailers [1]. work. Since the participants of this data distribution network act The 3G subscriber market can be categorized into groups as selfish agents, they may collude to maximize their individual with shared interest in location-based services, e.g., the pre- payoff. Our proposed protocol discourages potential collusion sce- view of movies in a theater or the scene of the beach nearby. narios. In this architecture, the goal (social function) of the 3G ser- Since the 3G radio resources are limited, it is expensive to re- vice provider is to have the selfishly motivated resident subscribers service as many data requests as possible. However, the choice of peatedly transmit large quantities of data over the air interface which set of items to cache is left to the individual user. The caching from the base station (BS). It is more economical for the ser- activity among the different users can be modeled as a market vice provider to offload such repeated requests on to the ad hoc sharing game. network comprised of its subscribers, where some of them may In this work, we study the Nash equilibria of market sharing have recently acquired a copy of the data. In this scenario, the games and the performance of such equilibria in terms of a social function. These games are a special case of congestion games that goal for the service provider is to give incentives for peer sub- have been studied in the economics literature. In particular, pure scribers in the system to cache and forward the data to the re- strategy Nash equilibria for this set of games exist. We give a poly- questing subscribers. Since each data item is large in size and nomial-time algorithm to find a pure strategy Nash equilibrium for transit subscribers are mobile, we assume that the data transfer a special case, while it is NP-hard to do so in the general case. As for occurs in within a range of a few hops. the performance of Nash equilibria, we show that the price of an- archy—the worst case ratio between the social function at any Nash We envision a system consisting of two groups of subscribers: equilibrium and at the social optimum—can be upper bounded resident and transit subscribers. Resident subscribers are less by a factor of 2. When the popularity follows a Zipf distribution, mobile and mostly confined to a certain geographical area. Res- the price of anarchy is bounded by 1.45 in the special case where ident subscribers have incentives to cache data items that are caching any item has a positive reward for all players. We prove specific to this geographical region since the service provider that the selfish behavior of computationally bounded agents con- verges to an approximate Nash equilibrium in a finite number of gives monetary rewards for satisfying the queries of transit sub- improvements. Furthermore, we prove that, after each agent com- scribers. Transit subscribers request their favorite data items putes its response function once using a constant factor approxi- when they visit a particular region. Since the service provider mation algorithm, the outcome of the game is within a factor of does not have knowledge of the spatial and temporal distribu- @log A of the optimal social value, where is the number of tion of requests, it is difficult if not impossible for the provider agents. Our simulation scenarios show that the price of anarchy is 30% better than that of the worst case analysis and that the system to stipulate which subscriber should cache which set of data quickly (1 or 2 steps) converges to a Nash equilibrium. items. Therefore, the decision of what to cache is left to each in- Index Terms—Mobile ad hoc networks, Nash equilibrium, dividual subscriber. The realization of this content distribution price of anarchy, third-generation (3G) wireless networks, unified system depends on two main issues. First, since subscribers are architecture. selfish agents, they may collude to increase their individual pay- offs. Collusion can result in other subscribers being cheated of Manuscript received February 15, 2005; revised January 15, 2006. This their rewards. In this work, we address the problem of colluding work was supported in part by the Office of Naval Research under Grant subscribers by providing a protocol framework that discourages N00014-05-1-0148. The work of L. Li was supported in part by the National or prevents collusions. The second issue is that the payoff of Science Foundation (NSF) under Grant ANI-0335244. This paper was pre- sented at the ACM Mobile Ad Hoc Networking and Computing Symposium, each item for each agent must be a function of the number of 2004. cache requests it services. This in turn depends on the number M. X. Goemans and V. S. Mirrokni are with the Department of Mathe- of agents who cache a given item since each agent has limited matics and the Computer Science and Artificial Intelligence Laboratories, Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: storage space (due to form factor, current 3G devices only have [email protected]; [email protected]). a couple of MB flash memory [1]). Therefore, each selfish agent L. Li and M. Thottan are with the Center for Networking Research, Bell Lab- may change the set of items it caches in response to the set of oratories, Lucent Technologies, Murray Hill, NJ 07974 USA (e-mail: erranlli@ research.bell-labs.com; [email protected]). items cached by others. This leads to a noncooperative caching Digital Object Identifier 10.1109/JSAC.2006.872884 scenario which we model as a market sharing game. 0733-8716/$20.00 © 2006 IEEE GOEMANS et al.: MARKET SHARING GAMES APPLIED TO CONTENT DISTRIBUTION IN AD HOC NETWORKS 1021 In the market sharing game, the primary questions are game and in Section VI, we show that pure strategy Nash equi- whether the system converges, i.e., results in a pure strategy librium exists, but it is NP-hard to find such an equilibrium. We Nash equilibrium and how long it will take to converge. The also provide a polynomial-time algorithm to find a pure strategy goal of the service provider is to offload as many cache requests Nash equilibrium for the special case when all the items have the as possible to the ad hoc network. We refer to this goal as same size. In Section VII, we model computationally bounded the social optimum. However, given the selfish behavior of agents by approximation algorithms and analyze the outcome the agents, it is unlikely that the system will result in a social of their selfish behavior. We observe that such agents converge optimum. Therefore, we would like to bound the ratio between to an approximate Nash equilibrium. We also show that, after the optimal social value and the outcome of the selfish behavior one step of improvements the outcome of the game is within an of players. We refer to this ratio as the price of anarchy. Fur- factor of the optimum. In Section VIII, we investigate thermore, when computing the selfish behavior of individual the price of anarchy for a set of sample instances and the con- players, it is essential to consider the computational constraint vergence rate to exact and approximate Nash equilibria. Related on the individual subscribers. We model computationally work is provided in Section IX. A discussion on our results and bounded agents using approximation algorithms and evaluate other relevant issues are described in Section X. We conclude in how fast the selfish behavior of such agents will converge to Section XI. an approximate Nash equilibrium or arrive at an approximate solution to the social function. II. SYSTEM ARCHITECTURE,TRUST MODEL, AND PROTOCOLS The main contributions of this paper are as follows. First, we study the applicability of noncooperative caching in wire- In this section, we briefly discuss the system architecture and less networks and propose a detailed protocol that provides in- the trust model for distributed noncooperative caching. We then centives for selfish agents to service other agents, while dis- outline the protocols required for offloading popular data items couraging collusion among participating agents. We model the from 3G networks to the multihop ad hoc network. Our archi- caching game among the different mobile users as a market tecture is largely the same as UCAN [14]. In our system archi- sharing game. We show that this is a special case of conges- tecture, we assume the following. tion games. It is known that pure strategy Nash equilibria exist • A service provider operates a 3G data network, e.g., for these games [21].
Recommended publications
  • The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H
    University of Baltimore Law ScholarWorks@University of Baltimore School of Law All Faculty Scholarship Faculty Scholarship 2000 The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H. Lande University of Baltimore School of Law, [email protected] Howard P. Marvel Ohio State University, [email protected] Follow this and additional works at: http://scholarworks.law.ubalt.edu/all_fac Part of the Antitrust and Trade Regulation Commons, and the Law and Economics Commons Recommended Citation The Three Types of Collusion: Fixing Prices, Rivals, and Rules, 2000 Wis. L. Rev. 941 (2000) This Article is brought to you for free and open access by the Faculty Scholarship at ScholarWorks@University of Baltimore School of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of ScholarWorks@University of Baltimore School of Law. For more information, please contact [email protected]. ARTICLES THE THREE TYPES OF COLLUSION: FIXING PRICES, RIVALS, AND RULES ROBERTH. LANDE * & HOWARDP. MARVEL** Antitrust law has long held collusion to be paramount among the offenses that it is charged with prohibiting. The reason for this prohibition is simple----collusion typically leads to monopoly-like outcomes, including monopoly profits that are shared by the colluding parties. Most collusion cases can be classified into two established general categories.) Classic, or "Type I" collusion involves collective action to raise price directly? Firms can also collude to disadvantage rivals in a manner that causes the rivals' output to diminish or causes their behavior to become chastened. This "Type 11" collusion in turn allows the colluding firms to raise prices.3 Many important collusion cases, however, do not fit into either of these categories.
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Interim Correlated Rationalizability
    Interim Correlated Rationalizability The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dekel, Eddie, Drew Fudenberg, and Stephen Morris. 2007. Interim correlated rationalizability. Theoretical Economics 2, no. 1: 15-40. Published Version http://econtheory.org/ojs/index.php/te/article/view/20070015 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3196333 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Theoretical Economics 2 (2007), 15–40 1555-7561/20070015 Interim correlated rationalizability EDDIE DEKEL Department of Economics, Northwestern University, and School of Economics, Tel Aviv University DREW FUDENBERG Department of Economics, Harvard University STEPHEN MORRIS Department of Economics, Princeton University This paper proposes the solution concept of interim correlated rationalizability, and shows that all types that have the same hierarchies of beliefs have the same set of interim-correlated-rationalizable outcomes. This solution concept charac- terizes common certainty of rationality in the universal type space. KEYWORDS. Rationalizability, incomplete information, common certainty, com- mon knowledge, universal type space. JEL CLASSIFICATION. C70, C72. 1. INTRODUCTION Harsanyi (1967–68) proposes solving games of incomplete
    [Show full text]
  • Tacit Collusion in Oligopoly"
    Tacit Collusion in Oligopoly Edward J. Green,y Robert C. Marshall,z and Leslie M. Marxx February 12, 2013 Abstract We examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between econo- mists’analysis of tacit collusion and those in the legal literature. We provide examples of when the economic environment might be such that collusive pro…ts can be achieved without communication and, thus, when tacit coordination is su¢ cient to elevate pro…ts versus when com- munication would be required. The authors thank the Human Capital Foundation (http://www.hcfoundation.ru/en/), and especially Andrey Vavilov, for …nancial support. The paper bene…tted from discussions with Roger Blair, Louis Kaplow, Bill Kovacic, Vijay Krishna, Steven Schulenberg, and Danny Sokol. We thank Gustavo Gudiño for valuable research assistance. [email protected], Department of Economics, Penn State University [email protected], Department of Economics, Penn State University [email protected], Fuqua School of Business, Duke University 1 Introduction In this chapter, we examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between tacit collusion in the economics and legal literature. Economists distinguish between tacit and explicit collusion. Lawyers, using a slightly di¤erent vocabulary, distinguish between tacit coordination, tacit agreement, and explicit collusion. In hopes of facilitating clearer communication between economists and lawyers, in this chapter, we attempt to provide a coherent resolution of the vernaculars used in the economics and legal literature regarding collusion.1 Perhaps the easiest place to begin is to de…ne explicit collusion.
    [Show full text]
  • Imbalanced Collusive Security Games
    Imbalanced Collusive Security Games Han-Ching Ou, Milind Tambe, Bistra Dilkina, and Phebe Vayanos Computer Science Department, University of Southern California {hanchino,tambe,dilkina,phebe.vayanos }@usc.edu Abstract. Colluding adversaries is a crucial challenge for defenders in many real-world applications. Previous literature has provided Collusive Security Games (COSG) to model colluding adversaries, and provided models and algorithms to generate defender strategies to counter colluding adversaries, often by devising strategies that inhibit collusion [6]. Unfortunately, this previous work focused exclusively on situations with perfectly matched adversaries, i.e., where their rewards were symmetrically distributed. In the real world, however, defenders often face adversaries where their rewards are asymmetrically distributed. Such inherent asymmetry raises a question as to whether human adversaries would at- tempt to collude in such situations, and whether defender strategies to counter such collusion should focus on inhibiting collusion. To address these open ques- tions, this paper: (i) explores and theoretically analyzes Imbalanced Collusive Security Games (ICOSG) where defenders face adversaries with asymmetrically distributed rewards; (ii) conducts extensive experiments of three different adver- sary models involving 1800 real human subjects and (iii) derives novel analysis of the reason behind why bounded rational attackers models outperform perfectly rational attackers models. The key principle discovered as the result of our
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Stähler, Frank Working Paper — Digitized Version Markov perfection and cooperation in repeated games Kiel Working Paper, No. 760 Provided in Cooperation with: Kiel Institute for the World Economy (IfW) Suggested Citation: Stähler, Frank (1996) : Markov perfection and cooperation in repeated games, Kiel Working Paper, No. 760, Kiel Institute of World Economics (IfW), Kiel This Version is available at: http://hdl.handle.net/10419/46946 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Kieler Arbeitspapiere Kiel Working Papers Kiel Working Paper No. 760 Markov perfection and cooperation in repeated games by Frank Stahler August 1996 Institut fur Weltwirtschaft an der Universitat Kiel The Kiel Institute of World Economics ISSN 0342 - 0787 The Kiel Institute of World Economics Diisternbrooker Weg 120 D-24105Kiel, FRG Kiel Working Paper No.
    [Show full text]
  • Collusion and Heterogeneity of Firms∗
    Collusion and Heterogeneity of Firms∗ Ichiro Obaray Federico Zincenko z June 13, 2016 Abstract We examine the impact of heterogeneous discounting on collusion in dynamic Bertrand competition. We show exactly when collusion can be sustained and how collusion would be organized efficiently with heterogeneous discounting. First we show that collusion is possible if and only if the average discount factor exceeds a certain threshold, with or without capacity constraints. Next we identify a dynamic pattern of market share that characterizes efficient collusion and obtain the unique long-run prediction despite the presence of multiple equilibria. In the long run, the most patient firm and the most impatient firm tend to dominate the market. JEL Classification: C72, C73, D43. Keywords: Bertrand Competition, Capacity Constraint, Collusion, Repeated Game, Subgame Perfect Equilibrium. Unequal Discounting. ∗This article was developed from the second chapter (co-authored with I. Obara) of Zincenko's doctoral dissertation at UCLA. We would like to thank the editor and anonymous referees for their useful comments. We also like to thank the participants at many seminars at various universities, 2011 Asian Meeting of the Econometric Society at Korea University, 2012 Southwest Economic Theory Conference at UC San Diego, and 2013 North American Summer Meeting of the Econometric Society at USC. All remaining errors are ours. yUniversity of California, Los Angeles; [email protected]. zUniversity of Pittsburgh; [email protected]. 1 1 Introduction To understand when and how collusion arises with heterogeneous discounting, we study a dynamic Bertrand competition model, in which firms discount future profits at different discount rates, and examine the impact of heterogeneous discounting on collusion.
    [Show full text]
  • Game Playing
    Game Playing Philipp Koehn 29 September 2015 Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Outline 1 ● Games ● Perfect play – minimax decisions – α–β pruning ● Resource limits and approximate evaluation ● Games of chance ● Games of imperfect information Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 2 games Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Games vs. Search Problems 3 ● “Unpredictable” opponent ⇒ solution is a strategy specifying a move for every possible opponent reply ● Time limits ⇒ unlikely to find goal, must approximate ● Plan of attack: – computer considers possible lines of play (Babbage, 1846) – algorithm for perfect play (Zermelo, 1912; Von Neumann, 1944) – finite horizon, approximate evaluation (Zuse, 1945; Wiener, 1948; Shannon, 1950) – first Chess program (Turing, 1951) – machine learning to improve evaluation accuracy (Samuel, 1952–57) – pruning to allow deeper search (McCarthy, 1956) Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Types of Games 4 deterministic chance perfect Chess Backgammon information Checkers Monopoly Go Othello imperfect battleships Bridge information Blind Tic Tac Toe Poker Scrabble Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Game Tree (2-player, Deterministic, Turns) 5 Philipp Koehn Artificial Intelligence: Game Playing 29 September 2015 Simple Game Tree 6 ● 2 player game ● Each player has one move ● You move first ● Goal: optimize your payoff (utility) Start Your move Opponent
    [Show full text]
  • Chapter 10 Game Theory: Inside Oligopoly
    Managerial Economics & Business Strategy Chapter 10 Game Theory: Inside Oligopoly McGraw-Hill/Irwin Copyright © 2010 by the McGraw-Hill Companies, Inc. All rights reserved. Overview I. Introduction to Game Theory II. Simultaneous-Move, One-Shot Games III. Infinitely Repeated Games IV. Finitely Repeated Games V. Multistage Games 10-2 Game Environments Players’ planned decisions are called strategies. Payoffs to players are the profits or losses resulting from strategies. Order of play is important: – Simultaneous-move game: each player makes decisions with knowledge of other players’ decisions. – Sequential-move game: one player observes its rival’s move prior to selecting a strategy. Frequency of rival interaction – One-shot game: game is played once. – Repeated game: game is played more than once; either a finite or infinite number of interactions. 10-3 Simultaneous-Move, One-Shot Games: Normal Form Game A Normal Form Game consists of: – Set of players i ∈ {1, 2, … n} where n is a finite number. – Each players strategy set or feasible actions consist of a finite number of strategies. • Player 1’s strategies are S 1 = {a, b, c, …}. • Player 2’s strategies are S2 = {A, B, C, …}. – Payoffs. • Player 1’s payoff: π1(a,B) = 11. • Player 2’s payoff: π2(b,C) = 12. 10-4 A Normal Form Game Player 2 Strategy ABC a 12 ,11 11 ,12 14 ,13 b 11 ,10 10 ,11 12 ,12 Player 1 Player c 10 ,15 10 ,13 13 ,14 10-5 Normal Form Game: Scenario Analysis Suppose 1 thinks 2 will choose “A”. Player 2 Strategy ABC a 12 ,11 11 ,12 14 ,13 b 11 ,10 10 ,11 12 ,12 Player 1 Player c 10 ,15 10 ,13 13 ,14 10-6 Normal Form Game: Scenario Analysis Then 1 should choose “a”.
    [Show full text]
  • Archived Colloquia 2007/08
    Archived Colloquia 2007/08 October 19, 2007: Doron Zeilberger (Rutgers University) Title: Mathematics: An Experimental Science Indeed (Flyer) Abstract: A year ago, in this very same colloquium, my good friend and collaborator Herb Wilf gave a talk with almost the same title (without the last word). However, he was talking about Experimental Mathematics the way it is done today and in the next few years. I will talk on how it would be done in fifty years. November 2, 2007: Sam Payne (Stanford University) Title: Bidding Games - Theory and Practice (Flyer) Abstract: What happens if you play your favorite two-player game, such as connect four or chess, but instead of alternating moves you bid against your opponent for the right to move? The bidding works like this { suppose you and your opponent both start with one hundred chips. If you bid ten for the first move, and your opponent bids twelve, then your opponent gives you twelve chips and makes the first move. Now you have one hundred and twelve chips, your opponent has eighty-eight, and you bid for the second move. The goal is simply to win the game; chips have no value when the game is over. The basic theory of such games is simple and elegant, with a surprising relation to random-turn games, in which the right to move is determined by a coin flip. In practice, these bidding games are fun and disorienting. Even tic-tac-toe becomes a challenge. February 29, 2008: Steve Bleiler (Portland State University) Title: Schooling, Implicit Collusion, and the Fundamental Theorem of Poker, or What to do when the Guppies are eating the Sharks.
    [Show full text]
  • Optimal Collusion Under Cost Asymmetry
    Munich Personal RePEc Archive Optimal Collusion under Cost Asymmetry Miklos-Thal, Jeanine 2008 Online at https://mpra.ub.uni-muenchen.de/11044/ MPRA Paper No. 11044, posted 12 Oct 2008 11:07 UTC Optimal Collusion under Cost Asymmetry Jeanine Miklós-Thal June 2008 Abstract Cost asymmetry is generally thought to hinder collusion because a more e¢- cient …rm has both more to gain from a deviation and less to fear from retaliation than less e¢cient …rms. Our paper reexamines this conventional wisdom and char- acterizes optimal collusion without any prior restriction on the class of strategies. We …rst stress that …rms can credibly agree on retaliation schemes that maximally punish even the most e¢cient …rm. This implies that whenever collusion is sustain- able under cost symmetry, some collusion is also sustainable under cost asymmetry; e¢cient collusion, however, remains more di¢cult to sustain when costs are asym- metric. Finally, we show that, in the presence of side payments, cost asymmetry generally facilitates collusion. keywords: horizontal collusion, cost asymmetry, optimal punishments, side payments JEL codes: L11, L41, C72 University of Mannheim, Fakultät für Volkswirtschaftslehre, L7,9, 68131 Mannheim, Germany - jea- [email protected]. This paper is based on chapter 2 of my doctoral dissertation at the University of Toulouse 1, written under the supervision of Patrick Rey. The paper has also bene…tted from comments by the editor Dan Kovenock, two anonymous referees, Mohamed Belhaj, Bruno Jullien, Ulrich Kamecke, Joe Harrington and participants of the 2004 WZB/CEPR "Collusion and Cartels" conference, the Econo- metric Society World Congress 2005, and the European Winter Meeting of the Econometric Society 2005.
    [Show full text]
  • Weak Cartels and Collusion-Proof Auctions∗
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Essex Research Repository Weak Cartels and Collusion-Proof Auctions∗ Yeon-Koo Che, Daniele Condorelli, Jinwoo Kimy April 19, 2018 Abstract We study private value auctions in which bidders may collude without using side- payments. In our model, bidders coordinate their actions to achieve an outcome that interim-Pareto dominates the noncooperative outcome. We characterize auctions that are collusion-proof in the sense that no such coordination opportunities exist, and show that the efficient and revenue maximizing auctions are not collusion-proof unless all bidders exhibit a concave distribution of valuations. We then solve for revenue maximizing collusion-proof auctions. If distributions of valuations are symmetric and single-peaked, the optimal selling mechanism is a standard auction with a minimum bid, followed by sequential negotiation in case no bidder bids above the minimum bid. Keywords: Weak cartels, weakly collusion-proof auctions, optimal auctions. JEL-Code: D44, D82. 1 Introduction Collusion is a pervasive problem in auctions, especially in public procurement. A canonical example is the famous “Great Electrical Conspiracy” in the 1950s, in which more than 40 ∗We thank Philippe Jehiel, Philipp Kircher, Navin Kartik, Michihiro Kandori, Debasis Mishra, Jidong Zhou and several referees for their comments, and Cheonghum Park for his excellent research assistantship. We thank seminar participants at University of Bonn Summer Conference, Columbia University, University College London, HKUST, University of Iowa, Korea Development Institute, Korea University, Northwest- ern University, 2014 Decentralization Conference, Cireq Montreal Microeconomic Theory Conference, and the 10th World Congress in Shanghai.
    [Show full text]