Strong Price of Anarchy∗

Total Page:16

File Type:pdf, Size:1020Kb

Strong Price of Anarchy∗ Strong Price of Anarchy∗ Nir Andelman† Michal Feldman‡ Yishay Mansour§ Abstract scheduling [15, 7], network formation [9, 1, 6], and more. A strong equilibrium (Aumann 1959) is a pure Nash equilib- In a Nash equilibrium no agent can improve its own rium which is resilient to deviations by coalitions. We define utility by unilaterally changing its action. This notion the strong price of anarchy to be the ratio of the worst case thus accounts for two properties, namely, selfishness and strong equilibrium to the social optimum. In contrast to lack of coordination. the traditional price of anarchy, which quantifies the loss We adopt the solution concept of strong equilibrium, incurred due to both selfishness and lack of coordination, proposed by Aumann [3]. In a strong equilibrium, no the strong price of anarchy isolates the loss originated from coalition (of any size) can deviate and improve the selfishness from that obtained due to lack of coordination. utility of every member of the coalition (while possibly 1 We study the strong price of anarchy in two settings, one lowering the utility of players outside the coalition) . of job scheduling and the other of network creation. In the Clearly, every strong equilibrium is a Nash equilibrium, job scheduling game we show that for unrelated machines but the converse does not hold. In cases where a strong the strong price of anarchy can be bounded as a function of equilibrium exists, it seems to be a very robust notion. the number of machines and the size of the coalition. For Considering strong equilibrium allows us to separate the the network creation game we show that the strong price of effect of selfishness (which remains in strong equilibria) anarchy is at most 2. In both cases we show that a strong from that of lack of coordination (which disappears, equilibrium always exists, except for a well defined subset of since a strong equilibrium is resilient to deviations in network creation games. coalitions). We define the strong price of anarchy (SPoA) to 1 Introduction. be the ratio of the worst strong equilibrium and the social optimum. In contrast to the traditional PoA, Much of the classical work in scheduling and optimiza- which quantifies the loss incurred due to both selfishness tion has been centered on finding efficient algorithms, and lack of coordination, the SPoA isolates the loss in the sense that they optimize a certain global func- that is incurred due to selfishness. The SPoA metric tion (also called social optimum). The recent inter- is well defined only when a strong equilibrium exists. est in computational game theory is based, in part, on Unfortunately, most games do not admit any strong the recognition that the agents involved may be selfish, equilibrium (even if mixed strategies are allowed2). meaning that they are motivated by optimizing their Thus, in order to analyze the SPoA, one must first prove own utilities rather than reaching the social optimum. that a strong equilibrium exists in the specific setting Therefore, one cannot assume that the social optimum at hand. can be enforced on the selfish agents. In cases where the SPoA yields substantially better A natural concern is quantifying the efficiency loss results than the PoA, it suggests that coordination can incurred due to selfish behavior. A metric that is significantly improve the efficiency loss. If, on the other widely accepted in the computer science literature is hand, the SPoA and PoA yield similar results, the the ratio between the worst possible solution reached efficiency loss, as quantified by the PoA, is derived from with selfish agents and the social optimum. The Price selfishness alone, and coordination will not help. We of Anarchy (PoA) [15, 18] quantifies this loss as the will see examples of both cases in the games we study. ratio between the cost of the worst Nash equilibrium and the social optimum, and has been extensively studied in 1The strong equilibrium solution concept does not require that the contexts of the contexts of selfish routing [19], job the deviation itself will be resilient to further deviations. A related, yet weaker, solution concept is a coalition-proof Nash equilibrium [5] requiring that the deviation by the coalition is ∗ Research partially supported by a grant of the Israel Science itself resilient to further deviations by subsets of the coalition. Foundation, BSF and an IBM faculty award. This implies that the coalition-proof Nash equilibrium includes † School of Computer Science, Tel Aviv University. any strong equilibrium but rules out many Nash equilibria. ‡ School of Computer Science, Hebrew University of Jerusalem. 2This is in contrast to Nash equilibrium, which exists (perhaps § School of Computer Science, Tel Aviv University. in mixed strategies) in every finite game. 189 In our definition we also consider the size of the at least 6. We show that for either a smaller number of coalition as a parameter and define k-SPoA to be the players (four or less) or smaller coalitions (size at most ratio of the worst Nash equilibrium which is immune 2) there always exists a strong equilibrium. to coalitions of size up to k and the social optimum.3 Previous work has already bounded the PoA of the This is a natural restriction in many settings, where the network creation game [9, 1]. Roughly, for α = O(√n) ability to coordinate may be limited. and α = Ω(n log n) the PoA is constant. For α [√n, n] A related, yet different, notion of coalitions has been the PoA is O(α2/3/n1/3) and for α [n, n log n]∈ the PoA studied recently by [12], where a coalition is assumed to is O(n2/3/α1/3). We show that for∈ any α 2 the SPoA be fixed and acts as a new selfish player, attempting is at most 2. ≥ to maximize its utility. Coalitions have been also The Price of Stability (PoS) [2] is the ratio of the considered from the point of view of mechanism design, best Nash equilibrium to the social optimum. Similarly, where it is desired to design truthful mechanisms that one can define the Strong Price of Stability (SPoS) are resilient to the formation of coalitions, known as as the ratio of the best strong equilibrium and the group-strategyproof mechanisms [17, 11]. optimum. Our existence results show that for both In this work we consider two different sets of games. job scheduling and network creation the SPoS is 1, The first is derived from job scheduling, where each since there exists an optimal solution which is a strong player controls a single job and selects the machine on equilibrium. which the job is run. The cost to the player is the load The vast literature on strong equilibrium has fo- on the machine it selected while the social cost is the cused both on pure strategies and pure deviations (e.g., makespan (the maximal load on any machine). The [13, 14, 16, 5]). This has been mainly motivated by the second game is a network creation game [9, 1]. In this fact that the strong equilibrium is already a solution game the players can be viewed as nodes in a graph. concept that does not exist in many cases and allowing Each player (node) buys links (to other nodes) at the mixed deviations would only further reduce it. The only cost of α per link. The set of edges in the resulting exception is [20] where correlated deviations are consid- graph is the union of the links that the players (nodes) ered. We show that in the job scheduling setting, once bought. The cost to the player is the cost of the links we allow mixed deviations by coalitions, in many cases it bought plus the sum of the distances to all the nodes no strong equilibrium exists (in contrast to pure devi- (players) in the resulting graph. The social cost is the ations, where always some strong equilibrium exists). sum of the players’ costs (the social welfare). More specifically, in the case of mixed strategies and For the job scheduling game, we consider mostly the deviations, for m 5 identical machines and n > 3m model of unrelated machines (namely, the load of a job identical jobs, there≥ is no mixed strong equilibrium with is a function of the machine it is scheduled on). While respect to mixed deviations. it is rather simple to show that for unrelated machines the PoA is unbounded (see [4]), we show that the SPoA 2 Model. is bounded as a function of the number of players and In this section we provide general notations and defini- machines. More specifically, we show that: (1) For m tions, while in Sections 3.1 and 4.1 we provide the no- machines the worst-case SPoA is at most 2m 1 and tations and definitions for the specific games we study. at least m (and for 2 machines the SPoA is− 2.) (2) A game is denoted by a tuple G =< N, (Si), (ci) >, For m machines and n players the worst-case k-SPoA is where N is the set of players, Si is the finite action space at most O(nm2/k) and at least Ω(n/k). Moreover, we of player i N, and ci is the cost function of player i. show that a strong equilibrium always exists, and some We denote∈ by n = N the number of players. The optimal solution is also a strong equilibrium. | | n joint action space of the players is S = i=1Si. For a For the network creation game, we show that for × joint action s S we denote by s−i the actions of players most values of α there is some strong equilibrium.
Recommended publications
  • Potential Games. Congestion Games. Price of Anarchy and Price of Stability
    8803 Connections between Learning, Game Theory, and Optimization Maria-Florina Balcan Lecture 13: October 5, 2010 Reading: Algorithmic Game Theory book, Chapters 17, 18 and 19. Price of Anarchy and Price of Staility We assume a (finite) game with n players, where player i's set of possible strategies is Si. We let s = (s1; : : : ; sn) denote the (joint) vector of strategies selected by players in the space S = S1 × · · · × Sn of joint actions. The game assigns utilities ui : S ! R or costs ui : S ! R to any player i at any joint action s 2 S: any player maximizes his utility ui(s) or minimizes his cost ci(s). As we recall from the introductory lectures, any finite game has a mixed Nash equilibrium (NE), but a finite game may or may not have pure Nash equilibria. Today we focus on games with pure NE. Some NE are \better" than others, which we formalize via a social objective function f : S ! R. Two classic social objectives are: P sum social welfare f(s) = i ui(s) measures social welfare { we make sure that the av- erage satisfaction of the population is high maxmin social utility f(s) = mini ui(s) measures the satisfaction of the most unsatisfied player A social objective function quantifies the efficiency of each strategy profile. We can now measure how efficient a Nash equilibrium is in a specific game. Since a game may have many NE we have at least two natural measures, corresponding to the best and the worst NE. We first define the best possible solution in a game Definition 1.
    [Show full text]
  • Price of Competition and Dueling Games
    Price of Competition and Dueling Games Sina Dehghani ∗† MohammadTaghi HajiAghayi ∗† Hamid Mahini ∗† Saeed Seddighin ∗† Abstract We study competition in a general framework introduced by Immorlica, Kalai, Lucier, Moitra, Postlewaite, and Tennenholtz [19] and answer their main open question. Immorlica et al. [19] considered classic optimization problems in terms of competition and introduced a general class of games called dueling games. They model this competition as a zero-sum game, where two players are competing for a user’s satisfaction. In their main and most natural game, the ranking duel, a user requests a webpage by submitting a query and players output an or- dering over all possible webpages based on the submitted query. The user tends to choose the ordering which displays her requested webpage in a higher rank. The goal of both players is to maximize the probability that her ordering beats that of her opponent and gets the user’s at- tention. Immorlica et al. [19] show this game directs both players to provide suboptimal search results. However, they leave the following as their main open question: “does competition be- tween algorithms improve or degrade expected performance?” (see the introduction for more quotes) In this paper, we resolve this question for the ranking duel and a more general class of dueling games. More precisely, we study the quality of orderings in a competition between two players. This game is a zero-sum game, and thus any Nash equilibrium of the game can be described by minimax strategies. Let the value of the user for an ordering be a function of the position of her requested item in the corresponding ordering, and the social welfare for an ordering be the expected value of the corresponding ordering for the user.
    [Show full text]
  • The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H
    University of Baltimore Law ScholarWorks@University of Baltimore School of Law All Faculty Scholarship Faculty Scholarship 2000 The Three Types of Collusion: Fixing Prices, Rivals, and Rules Robert H. Lande University of Baltimore School of Law, [email protected] Howard P. Marvel Ohio State University, [email protected] Follow this and additional works at: http://scholarworks.law.ubalt.edu/all_fac Part of the Antitrust and Trade Regulation Commons, and the Law and Economics Commons Recommended Citation The Three Types of Collusion: Fixing Prices, Rivals, and Rules, 2000 Wis. L. Rev. 941 (2000) This Article is brought to you for free and open access by the Faculty Scholarship at ScholarWorks@University of Baltimore School of Law. It has been accepted for inclusion in All Faculty Scholarship by an authorized administrator of ScholarWorks@University of Baltimore School of Law. For more information, please contact [email protected]. ARTICLES THE THREE TYPES OF COLLUSION: FIXING PRICES, RIVALS, AND RULES ROBERTH. LANDE * & HOWARDP. MARVEL** Antitrust law has long held collusion to be paramount among the offenses that it is charged with prohibiting. The reason for this prohibition is simple----collusion typically leads to monopoly-like outcomes, including monopoly profits that are shared by the colluding parties. Most collusion cases can be classified into two established general categories.) Classic, or "Type I" collusion involves collective action to raise price directly? Firms can also collude to disadvantage rivals in a manner that causes the rivals' output to diminish or causes their behavior to become chastened. This "Type 11" collusion in turn allows the colluding firms to raise prices.3 Many important collusion cases, however, do not fit into either of these categories.
    [Show full text]
  • Prophylaxy Copie.Pdf
    Social interactions and the prophylaxis of SI epidemics on networks Géraldine Bouveret, Antoine Mandel To cite this version: Géraldine Bouveret, Antoine Mandel. Social interactions and the prophylaxis of SI epi- demics on networks. Journal of Mathematical Economics, Elsevier, 2021, 93, pp.102486. 10.1016/j.jmateco.2021.102486. halshs-03165772 HAL Id: halshs-03165772 https://halshs.archives-ouvertes.fr/halshs-03165772 Submitted on 17 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Social interactions and the prophylaxis of SI epidemics on networkssa G´eraldineBouveretb Antoine Mandel c March 17, 2021 Abstract We investigate the containment of epidemic spreading in networks from a nor- mative point of view. We consider a susceptible/infected model in which agents can invest in order to reduce the contagiousness of network links. In this setting, we study the relationships between social efficiency, individual behaviours and network structure. First, we characterise individual and socially efficient behaviour using the notions of communicability and exponential centrality. Second, we show, by computing the Price of Anarchy, that the level of inefficiency can scale up to lin- early with the number of agents.
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Strategic Behavior in Queues
    Strategic behavior in queues Lecturer: Moshe Haviv1 Dates: 31 January – 4 February 2011 Abstract: The course will first introduce some concepts borrowed from non-cooperative game theory to the analysis of strategic behavior in queues. Among them: Nash equilibrium, socially optimal strategies, price of anarchy, evolutionarily stable strategies, avoid the crowd and follow the crowd. Various decision models will be considered. Among them: to join or not to join an M/M/1 or an M/G/1 queue, when to abandon the queue, when to arrive to a queue, and from which server to seek service (if at all). We will also look at the application of cooperative game theory concepts to queues. Among them: how to split the cost of waiting among customers and how to split the reward gained when servers pooled their resources. Program: 1. Basic concepts in strategic behavior in queues: Unobservable and observable queueing models, strategy profiles, to avoid or to follow the crowd, Nash equilibrium, evolutionarily stable strategy, social optimization, the price of anarchy. 2. Examples: to queue or not to queue, priority purchasing, retrials and abandonment, server selection. 3. Competition between servers. Examples: price war, capacity competition, discipline competition. 4. When to arrive to a queue so as to minimize waiting and tardiness costs? Examples: Poisson number of arrivals, fluid approximation. 5. Basic concepts in cooperative game theory: The Shapley value, the core, the Aumann-Shapley prices. Ex- amples: Cooperation among servers, charging customers based on the externalities they inflict on others. Bibliography: [1] M. Armony and M. Haviv, Price and delay competition between two service providers, European Journal of Operational Research 147 (2003) 32–50.
    [Show full text]
  • Interim Correlated Rationalizability
    Interim Correlated Rationalizability The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Dekel, Eddie, Drew Fudenberg, and Stephen Morris. 2007. Interim correlated rationalizability. Theoretical Economics 2, no. 1: 15-40. Published Version http://econtheory.org/ojs/index.php/te/article/view/20070015 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3196333 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Theoretical Economics 2 (2007), 15–40 1555-7561/20070015 Interim correlated rationalizability EDDIE DEKEL Department of Economics, Northwestern University, and School of Economics, Tel Aviv University DREW FUDENBERG Department of Economics, Harvard University STEPHEN MORRIS Department of Economics, Princeton University This paper proposes the solution concept of interim correlated rationalizability, and shows that all types that have the same hierarchies of beliefs have the same set of interim-correlated-rationalizable outcomes. This solution concept charac- terizes common certainty of rationality in the universal type space. KEYWORDS. Rationalizability, incomplete information, common certainty, com- mon knowledge, universal type space. JEL CLASSIFICATION. C70, C72. 1. INTRODUCTION Harsanyi (1967–68) proposes solving games of incomplete
    [Show full text]
  • Tacit Collusion in Oligopoly"
    Tacit Collusion in Oligopoly Edward J. Green,y Robert C. Marshall,z and Leslie M. Marxx February 12, 2013 Abstract We examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between econo- mists’analysis of tacit collusion and those in the legal literature. We provide examples of when the economic environment might be such that collusive pro…ts can be achieved without communication and, thus, when tacit coordination is su¢ cient to elevate pro…ts versus when com- munication would be required. The authors thank the Human Capital Foundation (http://www.hcfoundation.ru/en/), and especially Andrey Vavilov, for …nancial support. The paper bene…tted from discussions with Roger Blair, Louis Kaplow, Bill Kovacic, Vijay Krishna, Steven Schulenberg, and Danny Sokol. We thank Gustavo Gudiño for valuable research assistance. [email protected], Department of Economics, Penn State University [email protected], Department of Economics, Penn State University [email protected], Fuqua School of Business, Duke University 1 Introduction In this chapter, we examine the economics literature on tacit collusion in oligopoly markets and take steps toward clarifying the relation between tacit collusion in the economics and legal literature. Economists distinguish between tacit and explicit collusion. Lawyers, using a slightly di¤erent vocabulary, distinguish between tacit coordination, tacit agreement, and explicit collusion. In hopes of facilitating clearer communication between economists and lawyers, in this chapter, we attempt to provide a coherent resolution of the vernaculars used in the economics and legal literature regarding collusion.1 Perhaps the easiest place to begin is to de…ne explicit collusion.
    [Show full text]
  • Imbalanced Collusive Security Games
    Imbalanced Collusive Security Games Han-Ching Ou, Milind Tambe, Bistra Dilkina, and Phebe Vayanos Computer Science Department, University of Southern California {hanchino,tambe,dilkina,phebe.vayanos }@usc.edu Abstract. Colluding adversaries is a crucial challenge for defenders in many real-world applications. Previous literature has provided Collusive Security Games (COSG) to model colluding adversaries, and provided models and algorithms to generate defender strategies to counter colluding adversaries, often by devising strategies that inhibit collusion [6]. Unfortunately, this previous work focused exclusively on situations with perfectly matched adversaries, i.e., where their rewards were symmetrically distributed. In the real world, however, defenders often face adversaries where their rewards are asymmetrically distributed. Such inherent asymmetry raises a question as to whether human adversaries would at- tempt to collude in such situations, and whether defender strategies to counter such collusion should focus on inhibiting collusion. To address these open ques- tions, this paper: (i) explores and theoretically analyzes Imbalanced Collusive Security Games (ICOSG) where defenders face adversaries with asymmetrically distributed rewards; (ii) conducts extensive experiments of three different adver- sary models involving 1800 real human subjects and (iii) derives novel analysis of the reason behind why bounded rational attackers models outperform perfectly rational attackers models. The key principle discovered as the result of our
    [Show full text]
  • Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction
    Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction Renato Paes Leme Eva´ Tardos Department of Computer Science Department of Computer Science Cornell University, Ithaca, NY Cornell University, Ithaca, NY [email protected] [email protected] Abstract—The Generalized Second Price Auction has for advertisements and slots higher on the page are been the main mechanism used by search companies more valuable (clicked on by more users). The bids to auction positions for advertisements on search pages. are used to determine both the assignment of bidders In this paper we study the social welfare of the Nash equilibria of this game in various models. In the full to slots, and the fees charged. In the simplest model, information setting, socially optimal Nash equilibria are the bidders are assigned to slots in order of bids, and known to exist (i.e., the Price of Stability is 1). This paper the fee for each click is the bid occupying the next is the first to prove bounds on the price of anarchy, and slot. This auction is called the Generalized Second Price to give any bounds in the Bayesian setting. Auction (GSP). More generally, positions and payments Our main result is to show that the price of anarchy is small assuming that all bidders play un-dominated in the Generalized Second Price Auction depend also on strategies. In the full information setting we prove a bound the click-through rates associated with the bidders, the of 1.618 for the price of anarchy for pure Nash equilibria, probability that the advertisement will get clicked on by and a bound of 4 for mixed Nash equilibria.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Stähler, Frank Working Paper — Digitized Version Markov perfection and cooperation in repeated games Kiel Working Paper, No. 760 Provided in Cooperation with: Kiel Institute for the World Economy (IfW) Suggested Citation: Stähler, Frank (1996) : Markov perfection and cooperation in repeated games, Kiel Working Paper, No. 760, Kiel Institute of World Economics (IfW), Kiel This Version is available at: http://hdl.handle.net/10419/46946 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Kieler Arbeitspapiere Kiel Working Papers Kiel Working Paper No. 760 Markov perfection and cooperation in repeated games by Frank Stahler August 1996 Institut fur Weltwirtschaft an der Universitat Kiel The Kiel Institute of World Economics ISSN 0342 - 0787 The Kiel Institute of World Economics Diisternbrooker Weg 120 D-24105Kiel, FRG Kiel Working Paper No.
    [Show full text]
  • Collusion and Heterogeneity of Firms∗
    Collusion and Heterogeneity of Firms∗ Ichiro Obaray Federico Zincenko z June 13, 2016 Abstract We examine the impact of heterogeneous discounting on collusion in dynamic Bertrand competition. We show exactly when collusion can be sustained and how collusion would be organized efficiently with heterogeneous discounting. First we show that collusion is possible if and only if the average discount factor exceeds a certain threshold, with or without capacity constraints. Next we identify a dynamic pattern of market share that characterizes efficient collusion and obtain the unique long-run prediction despite the presence of multiple equilibria. In the long run, the most patient firm and the most impatient firm tend to dominate the market. JEL Classification: C72, C73, D43. Keywords: Bertrand Competition, Capacity Constraint, Collusion, Repeated Game, Subgame Perfect Equilibrium. Unequal Discounting. ∗This article was developed from the second chapter (co-authored with I. Obara) of Zincenko's doctoral dissertation at UCLA. We would like to thank the editor and anonymous referees for their useful comments. We also like to thank the participants at many seminars at various universities, 2011 Asian Meeting of the Econometric Society at Korea University, 2012 Southwest Economic Theory Conference at UC San Diego, and 2013 North American Summer Meeting of the Econometric Society at USC. All remaining errors are ours. yUniversity of California, Los Angeles; [email protected]. zUniversity of Pittsburgh; [email protected]. 1 1 Introduction To understand when and how collusion arises with heterogeneous discounting, we study a dynamic Bertrand competition model, in which firms discount future profits at different discount rates, and examine the impact of heterogeneous discounting on collusion.
    [Show full text]