<<

Supplement of Biogeosciences, 16, 4765–4781, 2019 https://doi.org/10.5194/bg-16-4765-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Major role of -oxidizing in N2O production in the Pearl River estuary

Li Ma et al.

Correspondence to: Yao Zhang ([email protected])

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. Table S1 In situ biogeochemical parameters at the incubation experiment sites. + - - Temperature DO NH4 NO3 NO2 Site_Layer (oC) (µmol L-1) (µmol L-1) (µmol L-1) (µmol L-1) P05_S 30 61.3 40.1 126.1 20.5 P05_B 30 54.7 33.3 123.5 24.5 P01_S 29 30.9 167.2 84.0 11.9 P01_B 29 30.0 166.5 82.0 11.6 S, surface; B, bottom.

1 1 Table S2 Isotopic composition of N2O during bacterial and archaeal ammonia oxidation, bacterial nitrifier-, and bacterial

2 denitrification.

15 Pathway Microorganisms Substrate  N-N2O References

+ NH4 −−60‰ Yoshida, 1988; Toyoda et al., 2017

+ europaea NH4 −−46‰ Sutka et al., 2006

+ β- NH4 −±‰ Jung et al., 2014

+ a NH4 −54.9−15.2‰ (0.5% O2) C-113a Frame and Casciotti, 2010 + a NH4 −13.6−6.7‰ (20% O2)

+ γ-proteobacteria Methylomonas methanica NH4 −39.4‰ Mandernack et al., 2009 Ammonia oxidation + CN25 (marine) NH4  ‰ Santoro et al., 2011

+ MY1 () NH4 −±‰ Jung et al., 2014

+ MY2 (soil) NH4 −±‰ Jung et al., 2014 Archaea + MY3 (soil) NH4 −±‰ Jung et al., 2014

+ JG1 (soil) NH4 −±‰ Jung et al., 2014

+ AR (marine sediment) NH4 −±‰ Jung et al., 2014

2 + CS (acid mine) NH4 −±‰ Jung et al., 2014

NH2OH −38−‰ Sutka et al., 2003

Nitrosomonas europaea NH2OH −5‰ Sutka et al., 2006

β-proteobacteria NH2OH −34−‰ Yamazaki et al., 2014 −3‰ Nitrosospira multiformis NH2OH Sutka et al., 2006 (Average −±2 ‰) oxidationb Nitrosomonas marina C-113a NH2OH −6.7‰ Frame and Casciotti, 2010

Nitrosococcus oceani NH2OH −17.9−5.8‰ Yamazaki et al., 2014

−0.31.7‰ NH2OH Sutka et al., 2003 γ-proteobacteria (Average 0.0±1.2‰) Methylococcus capsulatus 1.35.2‰ NH2OH Sutka et al., 2006 (Average 3.4±1.9‰)

- Nitrosomonas marina C-113a NO2 −57.6±4.1‰ Frame and Casciotti, 2010

- −−‰ Nitrifier-denitrification β-proteobacteria NO2 Sutka et al., 2003 (Average −±‰)

- −24−‰ Nitrosospira multiformis NO2 Sutka et al., 2006 (Average −22±‰)

- γ-proteobacteria Pseudomonas fluorescens NO3 −37−14‰ Toyoda et al., 2005 Denitrification - α-proteobacteria NO3 −20−7‰ Toyoda et al., 2005

a 1 O2 conditions of the incubation experiments.

3 b 15 + 1 Although the  N-N2O when using NH2OH as a substrate are listed here, the isotopic composition of N2O only when using NH4 as a substrate 2 was discussed in natural environments.

4 1 References

2 Frame, C. H., and Casciotti, K. L.: Biogeochemical controls and isotopic signatures of

3 production by a marine ammonia-oxidizing bacterium,

4 Biogeosciences, 7, 2695–2709, 2010.

5 Jung, M. Y., Well, R., Min, D., Giesemann, A., Park, S. J., Kim, J. G., and Rhee, S. K.:

6 Isotopic signatures of N2O produced by ammonia-oxidizing archaea from ,

7 ISME J., 8, 1115–1125, 2014.

8 Mandernack, K. W., Mills, C. T., Johnson, C. A., Rahn, T., and Kinney, C.: The 15N

18 9 and  O values of N2O produced during the co-oxidation of ammonia by

10 methanotrophic bacteria, Chem. Geol., 267, 96–107, 2009.

11 Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti K. L.: Isotopic Signature

12 of N2O Produced by Marine Ammonia-Oxidizing Archaea, Science, 333,

13 1282–1285, 2011.

14 Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Gandhi, H., and Breznak, J. A.:

15 isotopomer site preference of N2O produced by Nitrosomonas europaea and

16 Methylococcus capsulatus Bath, Rapid Commun. Mass Spectrom., 17, 738–745,

17 2003.

18 Sutka, R. L., Ostrom, N. E., Ostrom, P. H., Breznak, J. A., Gandhi, H., Pitt, A. J., and

19 Li, F.: Distinguishing Nitrous Oxide Production from and

20 Denitrification on the Basis of Isotopomer Abundances, Appl. Environ.

21 Microbiol., 72, 638–644, 2006.

22 Toyoda, S., Mutobe, H., Yamagishi, H., Yoshida, N., Tanji, Y.: Fractionation of N2O

23 isotopomers during production by denitrifier, Soil. Biol. Biochem., 37,

24 1535–1545, 2005.

25 Toyoda, S., Yoshida, N., and Koba, K.: Isotopocule analysis of biologically produced

26 nitrous oxide in various environments, Mass Spectrom. Rev., 36, 135–160,

27 2017.

28 Yamazaki, T., Hozuki, T., Arai, K., Toyoda, S., Koba, K., Fujiwara, T., and Yoshida,

5 1 N.: Isotopomeric characterization of nitrous oxide produced by reaction of

2 extracted from nitrifying and denitrifying bacteria, Biogeosciences, 11,

3 2679–2689, 2014.

15 4 Yoshida, N.: N-depleted N2O as a product of nitrification, Nature, 335, 528–529,

5 1988.

6 1 Table S3 The abundances of DNA- and cDNA-based amoA gene and the N2O production net rates and yields normalized to total amoA gene

2 copy or transcript numbers of AOA and AOB in a given sample at the incubation experiment sites.

N2O N2O N2O N2O N2O N2O DNA-based DNA-based production DNA-based DNA-based production cDNA-based cDNA-based production Site_ yields yields yields AOB (All) AOA (All) rates (All) AOB (PA) AOA (PA) rates (PA) AOB (PA) AOA (PA) rates (PA) Layer (All) (PA) (PA) (copies L-1) (copies L-1) (fmol (copies L-1) (copies L-1) (fmol (copies L-1) (copies L-1) (fmol (10-6) (10-6) (10-6) cell-1 h-1) cell-1 h-1) cell-1 h-1) P05_S 14030 34427 23.70 21.30 12125 29082 27.90 25.00 382928 138646 2.20 1.97 P05_B 87915 397740 2.90 3.25 77820 357308 3.24 3.63 89559 12559 13.80 15.50 P01_S 19623 642905 0.91 1.93 9343 578974 1.02 2.18 500 461578 1.30 2.77 P01_B 21334 251163 5.91 5.47 16458 221184 6.77 6.27 362 7436 206.00 191.00 3 S, surface; B, bottom; All, sum of particle-attached and free-living fractions; PA, particle-attached fraction.

7 Upper PRE surface 180 Upper PRE bottom Lingdingyang surface

P07 ) Lingdingyang bottom 150 A01 A01 -1 P07 Off-shore site surface

120 Off-shore site bottom mol L mol

 90

( A10 2- 3 60 A10 A11 A11 32

SiO 30 30 28 0 26 o C) 30 24 ( 25  20 15 22 10 20 Salinity 5 0 1

2 Figure S1: Three-dimensional scatter plot of potential temperature () (oC), salinity,

2- 3 and silicate (SiO3 ) concentration. PRE, Pearl River Estuary.

8