SIMBIO-SYS: Scientific Cameras and Spectrometer for the Bepicolombo
Total Page:16
File Type:pdf, Size:1020Kb
Space Sci Rev (2020) 216:75 https://doi.org/10.1007/s11214-020-00704-8 SIMBIO-SYS: Scientific Cameras and Spectrometer for the BepiColombo Mission G. Cremonese1 · F. Capaccioni2 · M.T. Capria2 · A. Doressoundiram3 · P. Palumbo4 · M. Vincendon5 · M. Massironi6 · S. Debei7 · M. Zusi2 · F. Altieri2 · M. Amoroso8 · G. Aroldi9 · M. Baroni9 · A. Barucci3 · G. Bellucci2 · J. Benkhoff10 · S. Besse11 · C. Bettanini7 · M. Blecka12 · D. Borrelli9 · J.R. Brucato13 · C. Carli2 · V. Carlier5 · P. Cerroni2 · A. Cicchetti2 · L. Colangeli10 · M. Dami9 · V. Da Deppo14 · V. Della Corte2 · M.C. De Sanctis2 · S. Erard3 · F. Esposito 15 · D. Fantinel1 · L. Ferranti16 · F. Ferri7 · I. Ficai Veltroni9 · G. Filacchione2 · E. Flamini17 · G. Forlani18 · S. Fornasier3 · O. Forni19 · M. Fulchignoni20 · V. Galluzzi2 · K. Gwinner21 · W. Ip 22 · L. Jorda23 · Y. Langevin 5 · L. Lara24 · F. Leblanc 25 · C. Leyrat3 · Y. Li 26 · S. Marchi27 · L. Marinangeli28 · F. Marzari29 · E. Mazzotta Epifani30 · M. Mendillo31 · V. Mennella15 · R. Mugnuolo32 · K. Muinonen33,34 · G. Naletto29 · R. Noschese2 · E. Palomba2 · R. Paolinetti9 · D. Perna30 · G. Piccioni2 · R. Politi2 · F. Poulet 5 · R. Ragazzoni1 · C. Re1 · M. Rossi9 · A. Rotundi35 · G. Salemi36 · M. Sgavetti37 · E. Simioni1 · N. Thomas38 · L. Tommasi9 · A. Turella9 · T. Van Hoolst39 · L. Wilson40 · F. Zambon 2 · A. Aboudan7 · O. Barraud3 · N. Bott3 · P. Borin 1 · G. Colombatti7 · M. El Yazidi7 · S. Ferrari7 · J. Flahaut41 · L. Giacomini2 · L. Guzzetta2 · A. Lucchetti1 · E. Martellato4 · M. Pajola1 · A. Slemer14 · G. Tognon7 · D. Turrini2 Received: 12 December 2019 / Accepted: 6 June 2020 / Published online: 17 June 2020 © The Author(s) 2020 Abstract The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mer- cury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon + science program. The SIMBIO-SYS instrument will provide all the science imaging capability of the Bepi- Colombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with a broad spectral band in the 400-950 nm range and medium spatial resolution (at best 58 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel (HRIC), with broad spec- tral bands in the 400-900 nm range and high spatial resolution (at best 6 m/px), that will pro- The BepiColombo mission to Mercury Edited by Johannes Benkhoff, Go Murakami and Ayako Matsuoka B G. Cremonese [email protected] 1 INAF-Osservatorio Astronomico di Padova, Padova, Italy 2 INAF-IAPS, Roma, Italy 3 LESIA, Observatoire de Paris, Université PSL, CNRS, Université de Paris, Sorbonne Université, Meudon, France 75 Page 2 of 78 G. Cremonese et al. vide high-resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (6 nm at finest) in the 400-2000 nm range and spatial resolution reaching 120 m/px, it will provide global cover- age at 480 m/px with the spectral information, assuming the first orbit around Mercury with periherm at 480 km from the surface. SIMBIO-SYS will provide high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition using a wide spectral range, as for instance detecting sulphides or material derived by sulphur and carbon oxidation, at resolutions and coverage higher than the MESSENGER mission with a full co- alignment of the three channels. All the data that will be acquired will allow to cover a wide range of scientific objectives, from the surface processes and cartography up to the internal structure, contributing to the libration experiment, and the surface-exosphere interaction. The global 3D and spectral mapping will allow to study the morphology and the compo- sition of any surface feature. In this work, we describe the on-ground calibrations and the results obtained, providing an important overview of the instrument performances. The cali- brations have been performed at channel and at system levels, utilizing specific setup in most of the cases realized for SIMBIO-SYS. In the case of the stereo camera (STC), it has been necessary to have a validation of the new stereo concept adopted, based on the push-frame. This work describes also the results of the Near-Earth Commissioning Phase performed few weeks after the Launch (20 October 2018). According to the calibration results and the first commissioning the three channels are working very well. Keywords BepiColombo · Mercury 4 Dept. Physics, Univerisity Parthenope, Napoli, Italy 5 Université Paris-Saclay, CNRS, Institut d’Astrophysique Spatiale, 91405, Orsay, France 6 Dept. Geosciences, University of Padova, Padova, Italy 7 CISAS, University of Padova, Padova, Italy 8 ASI, Roma, Italy 9 Leonardo spa, Campi Bisenzio, Firenze, Italy 10 ESA, Estec, Noordwijk, The Netherlands 11 ESA-ESAC, Madrid, Spain 12 Space Research Center, Academy of Science, Warsaw, Poland 13 INAF-Osservatorio di Arcetri, Firenze, Italy 14 CNR-IFN, Padova, Italy 15 INAF-Osservatorio di Capodimonte, Napoli, Italy 16 Dept. Earth Sciences, University Federico II, Napoli, Italy 17 IRSPS-D’Annunzio University Chieti-Pescara, Chieti, Italy 18 Dept. of Engineering and Architecture, University of Parma, Parma, Italy 19 Institut de Recherche en Astrophysiques et Planetologie, Toulouse, France 20 UFR de Physique, Université Denis Diderot Paris 7, Paris, France 21 Planetengeologe am DLR-Institut fur Planetenforschung, Berlin, Germany 22 Institute of Astronomy and Space Science, National Central University, Chung Li, Taiwan 23 Laboratoire d’Astrophysique de Marseille, Marseille, France SIMBIO-SYS: Scientific Cameras and Spectrometer. Page 3 of 78 75 Acronyms AIV assembly integration and verification AMA absolute model ages APID application process identifier ASI Agenzia Spaziale Italiana ASW application software AT along track BB broad band BSW boot software CaSSIS color and stereo surface imaging system CFRP carbon fiber reinforced polymer CPCU command and process control unit CT cross track CTIA capacitance transimpedance amplifier DC dark current DN digital number DOF degree of freedom DPU data processing unit DSNU dark spatial non-uniformity DTM digital terrain model EDDS ESA ground operation system’s data dissemination system EGSE electrical ground segment equipment ESA European space agency EEPROM electrically erasable programmable read-only memory 24 Instituto de Astrofisica de Andalucia CSIC, Granada, Spain 25 LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France 26 Suzhou vocational University, SuZhou, China 27 SWRI, Boulder, USA 28 Dept. of Psychological, Humanisti and territorial Sciences, University d’Annunzio, Chieti, Italy 29 Dept. of Physics and Astronomy, University of Padova, Padova, Italy 30 INAF-Osservatorio Astronomico di Monte Porzio, Roma, Italy 31 Center for Space Physics, University of Boston, Boston, USA 32 ASI, Matera, Italy 33 Dept. of Physics, University of Helsinki, Helsinki, Finland 34 Finnish Geospatial Research Institute FGI, National Land Survey, Masala, Finland 35 Dept. of Sciences and Technologies, University Parthenope, Napoli, Italy 36 Dept. of Cultural Heritage, University of Padova, Padova, Italy 37 Dept. of Earth Sciences, University of Parma, Parma, Italy 38 Dept. Physics, University of Bern, Bern, Switzerland 39 Royal Observatory of Belgium, Brussels, Belgium 40 Institute of Environmental and Biological Sciences, University of Lancaster, Lancaster, United Kingdom 41 Centre de Recherches Pétrographiques et Géochimiques (CRPG), CNRS Université de Lorraine, Vandeuvres-lés-Nancy, France 75 Page 4 of 78 G. Cremonese et al. EMC electromagnetic compatibility FE conversion factor, electrons over energy FOP flight operation procedure FoV field of view FPA focal plane assembly FPGA field programmable gate array FPN fixed pattern noise GCP ground control points MPO mercury planetary module HK housekeeping HRIC high resolution imaging channel ICU internal calibration unit IFoV instantaneous field of view IG inverse gain IS integrating sphere IT integration time ITO indium tin oxide ITR integrate then read LHB late heavy bombardment LRM low reflectance material MDIS mercury dual imaging system ME main electronic MTF modulation transfer function NECP near earth commission phase NESR noise-equivalent spectral radiance OB optical bench OBCP onboard control procedures OBSW onboard software OGSE optical ground support equipment PDOR payload direct operation request PE proximity electronic PFM proto flight model PPD pinned photo diode PR photo response PRNU photo response non-uniformity PROM programmable read-only memory PSF point spread function PU power unit QE quantum efficiency RC Ritchey-Chretien RFM rational function model RMSE root mean square error ROIC readout integrated circuit RON readout noise RVS raytheon vision systems SC spurious charge SIMBIO-SYS Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem SNR signal to noise ratio SIMBIO-SYS: Scientific Cameras and Spectrometer. Page 5 of 78 75 STC stereo channel SVS stereo validation team TC telecommand TEC thermoelectric cooler TIRD thermal infrared rejection device TM telemetry TVC thermal vacuum chamber UT unit tester VIHI visible and near-infrared hyperspectral imaging VIRS visible/infrared spectrometer 1 Introduction The Spectrometer and Imagers for