Brisbane River Catchment Flood Studies Settlement and Have Included Dredging and Removal of a Bar at the Mouth of the River
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brisbane Floods January 1974: Report by Director of Meteorology
Bureau of Meteorology, 1974 DEPARTMENT OF SCIENCE BUREAU OF METEOROLOGY REPORT BY DIRECTOR OF METEOROLOGY BRISBANE FLOODS JANUARY 1974 AUSTRALIAN GOVERNMENT PUBLISHING SERVICE CANBERRA 1974 2 Bureau of Meteorology, 1974 CONTENTS FOREWORD....................................................................................................... 7 INTRODUCTION ................................................................................................ 8 FLOODS IN THE BRISBANE VALLEY.............................................................. 9 Geographical Description................................................................................................9 Types of Flooding.............................................................................................................9 Flash flooding in creeks.................................................................................................9 River flooding ..............................................................................................................11 Backwater flooding......................................................................................................11 Storm surges and tidal effects......................................................................................12 The Effect of Dams.........................................................................................................12 Previous Floods ..............................................................................................................13 Flood Studies -
Fact Sheet How Dams Work
Fact sheet How dams work December 2015 In South East Queensland, our drinking water is predominantly Flood mitigation sourced from dams, which collect run-off rainwater from our catchments and store it. Our dams provide a safe, secure and At its most basic level, flood mitigation is capturing water and cost-effective water supply, as well as help to mitigate floods. then releasing it at a slower rate, with the aim of minimising river levels downstream of the dam. When dams fill, they are designed to pass the excess water into the creek or river system they are built on. What is Full Supply Level? Dam release notification service The Full Supply Level of a dam is the approved water storage level of the dam for drinking and/or irrigation purposes. Seqwater offers a free dam release notification service, which provides subscribers with notifications when gated dams For un-gated dams, if inflows result in the water level rising release water or un-gated dams are spilling. above the Full Supply Level, the water will spill out of the dam. This spilling cannot be controlled. Subscribers to Seqwater’s dam release notification service will also be notified when higher outflows are occurring from For our gated dams (Wivenhoe, Somerset and North Pine), if a spilling dam due to high inflows resulting from rainfall in the inflows result in the water level rising above the Full Supply catchment. Level, Seqwater will make controlled releases for either flood mitigation or to protect the safety of the dam. These notifications advise caution downstream due to potential hazards to people and property. -
Lockyer Creek Environmental Values and Water Quality Objectives Basin No 143 (Part) Including All Tributaries of the Creek
Environmental Protection (Water) Policy 2009 Lockyer Creek environmental values and water quality objectives Basin No 143 (part) including all tributaries of the creek July 2010 Prepared by: Water Quality & Ecosystem Health Policy Unit Department of Environment and Resource Management © State of Queensland (Department of Environment and Resource Management) 2010 The Department of Environment and Resource Management authorises the reproduction of textual material, whole or part, in any form, provided appropriate acknowledgement is given. This publication is available in alternative formats (including large print and audiotape) on request. Contact (07) 322 48412 or email <[email protected]> July 2010 Document Ref Number Main parts of this document and what they contain • Scope of waters covered Introduction • Key terms / how to use document (section 1) • Links to WQ plan (map) • Mapping / water type information • Further contact details • Amendment provisions • Source of EVs for this document Environmental Values • Table of EVs by waterway (EVs - section 2) - aquatic ecosystem - human use • Any applicable management goals to support EVs • How to establish WQOs to protect Water Quality Objectives all selected EVs (WQOs - section 3) • WQOs in this document, for - aquatic ecosystem EV - human use EVs • List of plans, reports etc containing Ways to improve management actions relevant to the water quality waterways in this area (section 4) • Definitions of key terms including an Dictionary explanation table of all (section 5) environmental values • An accompanying map that shows Accompanying WQ Plan water types, levels of protection and (map) other information contained in this document iii CONTENTS 1 INTRODUCTION ............................................................................................................................. 1 1.1 WATERS TO WHICH THIS DOCUMENT APPLIES ............................................................................. -
Fact Sheet Wivenhoe Dam
Fact sheet Wivenhoe Dam Wivenhoe Dam Wivenhoe Dam’s primary function is to provide a safe drinking Key facts water supply to the people of Brisbane and surrounding areas. It also provides flood mitigation. Name Wivenhoe Dam (Lake Wivenhoe) Watercourse Brisbane River The water from Lake Wivenhoe, the reservoir formed by the dam, is stored before being treated to produce drinking water Location Upstream of Fernvale and follows the water journey of source, store and supply. Catchment area 7020.0 square kilometres Length of dam wall 2300.0 metres Source Year completed 1984 Wivenhoe Dam is located on the Brisbane River in the Somerset Type of construction Zoned earth and rock fill Regional Council area. embankment Spillway gates 5 Water supply Full supply capacity 1,165,238 megalitres Wivenhoe Dam provides a safe drinking water supply for Flood mitigation 1,967,000 megalitres Brisbane, Ipswich, Logan, Gold Coast, Beaudesert, Esk, Gatton, Laidley, Kilcoy, Nanango and surrounding areas. The construction of the dam involved the placement of around 4 million cubic metres of earth and rock fill, and around 140,000 Wivenhoe Dam was designed and built as a multifunctional cubic metres of concrete in the spillway section. Excavation facility. The dam was built upstream of the Brisbane River, of 2 million cubic metres of earth and rock was necessary to 80 kilometres from Brisbane City. At full supply level, the dam construct the spillway. holds approximately 2,000 times the daily water consumption needed for Brisbane. The Brisbane Valley Highway was relocated to pass over the dam wall, while 65 kilometres of roads and a number of new Wivenhoe Dam, along with the Somerset, Hinze and North Pine bridges were required following construction of the dam. -
Brisbane River Catchment Flood Study Monte Carlo Hydraulic Analysis Mitchell Smith1, Bill Syme2, Rory Nathan3
Brisbane River Catchment Flood Study Monte Carlo Hydraulic Analysis Mitchell Smith1, Bill Syme2, Rory Nathan3 1Senior Engineer, BMT WBM, Brisbane, Australia E-mail: [email protected] 2Senior Principal, BMT WBM, Brisbane, Australia 3Associate Professor, University of Melbourne, Melbourne, Australia The Brisbane River catchment is large (~15,000 km2), of which roughly half flows into Wivenhoe Dam. Rainfall across the catchment is temporally and spatially highly variable and antecedent conditions and initial dam levels significantly vary year-to-year. The influence of Wivenhoe Dam and the joint probability complexities of flows from Lockyer Creek and Bremer River rule out conventional approaches for deriving AEP flood events. To capture this variability a calibrated 1D hydraulic flood model was used to simulate 11,340 Monte Carlo flood events from downstream of Wivenhoe Dam through to Brisbane to derive AEP flood levels. An innovative process was developed to extract a representative set of 60 events grouped into 11 ensembles for the 11 AEPs from the 1 in 2 to 1 in 100,000. 1. INTRODUCTION Completed in February 2017, the Brisbane River Catchment Flood Study (BRCFS) (BMT WBM, 2017) (Aurecon, 2015) assessed the flood behaviour of the Brisbane River below Wivenhoe Dam, including the lower sections of major tributaries Lockyer Creek and the Bremer River (refer Figure 1). The study represents one of the most comprehensive hydrologic and hydraulic modelling assessments undertaken in Australia to date. The BRCFS’s major objective: The estimation of probabilistic riverine flood information for eleven Annual Exceedance Probabilities (AEPs), ranging from the 1 in 2 to the 1 in 100,000 AEP. -
Inner Brisbane Heritage Walk/Drive Booklet
Engineering Heritage Inner Brisbane A Walk / Drive Tour Engineers Australia Queensland Division National Library of Australia Cataloguing- in-Publication entry Title: Engineering heritage inner Brisbane: a walk / drive tour / Engineering Heritage Queensland. Edition: Revised second edition. ISBN: 9780646561684 (paperback) Notes: Includes bibliographical references. Subjects: Brisbane (Qld.)--Guidebooks. Brisbane (Qld.)--Buildings, structures, etc.--Guidebooks. Brisbane (Qld.)--History. Other Creators/Contributors: Engineers Australia. Queensland Division. Dewey Number: 919.43104 Revised and reprinted 2015 Chelmer Office Services 5/10 Central Avenue Graceville Q 4075 Disclaimer: The information in this publication has been created with all due care, however no warranty is given that this publication is free from error or omission or that the information is the most up-to-date available. In addition, the publication contains references and links to other publications and web sites over which Engineers Australia has no responsibility or control. You should rely on your own enquiries as to the correctness of the contents of the publication or of any of the references and links. Accordingly Engineers Australia and its servants and agents expressly disclaim liability for any act done or omission made on the information contained in the publication and any consequences of any such act or omission. Acknowledgements Engineers Australia, Queensland Division acknowledged the input to the first edition of this publication in 2001 by historical archaeologist Kay Brown for research and text development, historian Heather Harper of the Brisbane City Council Heritage Unit for patience and assistance particularly with the map, the Brisbane City Council for its generous local history grant and for access to and use of its BIMAP facility, the Queensland Maritime Museum Association, the Queensland Museum and the John Oxley Library for permission to reproduce the photographs, and to the late Robin Black and Robyn Black for loan of the pen and ink drawing of the coal wharf. -
Rockhampton's Resilient Future
ROCKHAMPTON’S RESILIENT FUTURE DESIGN CHARRETTE Centre for Subtropical Design Queensland University of Technology 2 George Street GPO Box 2434 Brisbane QLD 4001 Australia Rosemary Kennedy Liz Brogden December 2015 Page 1 of 45 TABLE OF CONTENTS Executive Summary ..................................................................................................................................................................5 Introduction ..................................................................................................................................................................................6 Background ...................................................................................................................................................................................7 Rockhampton ..........................................................................................................................................................................7 Impact ....................................................................................................................................................................................8 The South Rockhampton Flood Levee Proposal .............................................................................................. 9 Objectives .................................................................................................................................................................................... 10 Approach and Methodology ............................................................................................................................................. -
Caboolture Shire Handbook
SHIRE HANDBOOK CABOOLTURE QUEENSLAND DEPARTMENT OF PRIMARY INDUSTRIES LIMITED DISTRIBUTION - GOV'T.i 1NSTRUHENTALITY OFFICERS ONLY CABOOLTURE SHIRE HANDBOOK compiled by G. J. Lukey, Dipl. Trop. Agric (Deventer) Queensland Department of Primary Industries October 1973. The material in this publication is intended for government and institutional use only, and is not to be used in any court of law. 11 FOREWORD A detailed knowledge and understanding of the environment and the pressures its many facets may exert are fundamental to those who work to improve agriculture, or to conserve or develop the rural environment. A vast amount of information is accumulating concerning the physical resources and the farming and social systems as they exist in the state of Queensland. This information is coming from a number of sources and references and is scattered through numerous publications and unpublished reports. Shire Handbooks, the first of which was published in February 1969, are an attempt to collate under one cover relevant information and references which will be helpful to the extension officer, the research and survey officer or those who are interested in industry or regional planning or in reconstruction. A copy of each shire handbook is held for reference in each Division and in each Branch of the Department of Primary Industries in Brisbane. In addition Agriculture Branch holds at its Head Office and in each of its country centres, Shire Handbooks, Regional Technical Handbooks (notes on technical matters relevant to certain agricultural industries in the Shire) and monthly and annual reports which are a continuing record of the progress and problems in agriculture. -
Lockyer Creek Environmental Values and Water Quality Objectives (Plan)
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! L O C K Y E R C R E E K , I N C L U D I N! G A L L T R I B U T A R I E S O F T H E C R E E K L O C K Y E R C R E E K , I N C L U D I N G A L L T R I B U T A R I E S O F T H E C R E E K ! ! ! ! ! ! ! ! ! ! ! ! ! Part of Basin 143 ! ! ! ! ! ! ! ! ! 152°E ! ! 152°20'E 152°40'E ! ! ! ! ! ! ! ! ! k ! e ! ! ! e y ! r ! l C ek l t ! bank Cr e u ! s CROWS NEST ed G ! ! ! ! e ! R y ! ! ! ! ! ! d ! ! N ! ! ! ! ! ! d ! s ! a ! ! ! ! ! w ! ! ! P o k ! r ! ! ! ! ! e C ! e ! ! r ! ! ! ! ! ! C ! ! ! ! ! r ! ! ! ! ! ! ! ! e ! ! ! ! ! ! ! p ek ! ! re ! ! o ! k ! p N rthb k C ! r o ! ! i o ! e K ! e ! r ! ! C SOMERSET REGIONAL ! ! ! y ek -
Erosion and Deposition During the January 2011 Lockyer Flood
Erosion, deposition and channel adjustment in Lockyer Creek, South East Queensland post the January 2011 Floods. Erosion and Deposition during the January 2011 Lockyer Flood. 1 2 3 4 Jacky Croke , Fiona Watson , Chris Thompson and Peter Todd 1 Australian Rivers Institute, Griffith University Nathan Campus, Queensland 4111 Email: [email protected] 2 Department of Environment and Resource Management, Remote Sensing Centre, Ecosciences Precinct, Dutton Park Q 4102 3 Integrated centre for Catchment Management (ICaM) Australian national University, ACT. 4 Department of Environment and Resource Management, Land Centre, Woolloongabba QLD 4102 Key Points • The Lockyer Catchment lies in an area of recognized hydrological variability. • For the January 2011 event, average peak flood transmission speeds varied from 24 kmh-1 to 2.9 kmh-1 between the upper and middle reaches. • Net erosion occurred only in the inner channel and macro-channel Banks. • Dominant form of channel adjustment was channel widening through Bank slumping and removal of within-channel Benches. Abstract This paper presents a preliminary assessment of the nature and spatial extent of erosion and deposition that occurred as a result of the January 2011 flood event in the Lockyer Valley, Queensland. Research methods include analysis of Both pre- and post-flood, high-resolution (LiDAR) digital elevation data, aerial photography, and field validation of selected sites. Results indicate that extensive channel widening (3xincrease) occurred in the steep bedrock confined river reaches of the upper valley. Dramatic examples of whole-scale re-organisation of channel morphology and geometry are apparent in these high-energy reaches. In the middle and downstream reaches, the dominant process of channel adjustment is bank slumping which has left significant and spatially widespread erosional scars. -
Workshop on the Impacts of Flooding
Workshop on the Impacts of Flooding Proceed/rigs of a Workshop held in Rockhamptori, Australia, 27 Septeinber 1991. , Edited by G.T. Byron Queensland Department of. ti Environment tand Heritage ’ Great Barrier Reef Marine Park Authority ‘, , ,’ @ Great Barrier Reef Marine Park Authority ISSN 0156-5842 ISBN 0 624 12044 7 Published by GBRMPA April 1992 The opinions expressed in th.is document are not necessarily those of the Great Barrier Reef Marine Park Authority or the Queensland Department of Env/ionment an!d Heritage. Great Barrier Reef Environment and P.O. Box 155 P.O. Box1379 North Quay , Townsville Queens’land 4002 Queensland 48 TABLE OF CONTENTS : PREFACE iv 1 EXECUTIVE SUMMARY V PART A: FORUM PAPERS Jim Pearce MLA Opening Address 1 Peter Baddiley Fitzroy River Basin 3 Rainfalls and The 1991 Flood Event Mike Keane Assessment of the 1991 16 Fitzroy River Flood How much water? J.P. O’Neill, G.T.Byron and Some Physical Characteristics 36 S.C.Wright and Movement of 1991 Fitzroy River flood plume PART B: WORKSHOP PAPERS GROUP A - WATER RELATED’ISSUES Jon E. Brodie and Nutrient Composition of 56 Alan Mitchell the January 1991 Fitzroy River Plume Myriam Preker The Effects of the 1991 75 Central Queensland Floodwaters around Heron Island, Great Barrier Reef i > d.T.Byron and J.P.O’Neill Flood Induced Coral Mortality 76 on Fringing Reefs in Keppel Bay J.S. Giazebrook and Effects of low salinity on 90 R. Van Woesik the tissues of hard corals Acropora spp., Pocillopora sp and Seriatopra sp from the Great Keppel region M. -
Series Editors James Rodger Fleming (Colby College) and Roger D
PALGRAVE STUDIES IN THE HISTORY OF SCIENCE AND TECHNOLOGY Series Editors James Rodger Fleming (Colby College) and Roger D. Launius (National Air and Space Museum) This series presents original, high-quality, and accessible works at the cutting edge of scholarship within the history of science and technology. Books in the series aim to disseminate new knowledge and new perspectives about the history of science and technology, enhance and extend education, foster public understanding, and enrich cultural life. Collectively, these books will break down conventional lines of demarcation by incorporating historical perspectives into issues of current and ongo- ing concern, offering international and global perspectives on a variety of issues, and bridging the gap between historians and practicing scientists. In this way they advance scholarly conversation within and across traditional disciplines but also to help define new areas of intellectual endeavor. Published by Palgrave Macmillan: Continental Defense in the Eisenhower Era: Nuclear Antiaircraft Arms and the Cold War By Christopher J. Bright Confronting the Climate: British Airs and the Making of Environmental Medicine By Vladimir Jankovic Globalizing Polar Science: Reconsidering the International Polar and Geophysical Years Edited by Roger D. Launius, James Rodger Fleming, and David H. DeVorkin Eugenics and the Nature-Nurture Debate in the Twentieth Century By Aaron Gillette John F. Kennedy and the Race to the Moon By John M. Logsdon A Vision of Modern Science: John Tyndall and the Role of the Scientist in Victorian Culture By Ursula DeYoung Searching for Sasquatch: Crackpots, Eggheads, and Cryptozoology By Brian Regal Inventing the American Astronaut By Matthew H. Hersch The Nuclear Age in Popular Media: A Transnational History Edited by Dick van Lente Exploring the Solar System: The History and Science of Planetary Exploration Edited by Roger D.