Melatonin On-Line
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
G Protein-Coupled Receptors
S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. -
Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium Falciparum
biomolecules Review Role of Melatonin in the Synchronization of Asexual Forms in the Parasite Plasmodium falciparum Maneesh Kumar Singh 1 ,Bárbara Karina de Menezes Dias 2 and Célia R. S. Garcia 1,* 1 Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; [email protected] 2 Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-11-3091-8536 Received: 15 July 2020; Accepted: 26 August 2020; Published: 27 August 2020 Abstract: The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host’s immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host–parasite biology. Keywords: melatonin; Apicomplexa; rhythm; signalling 1. Introduction Malaria is a disease associated with a remarkably high mortality rate in its endemic areas, which have subtropical climates. -
G Protein-Coupled Receptors
Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Marrion, N. V., Peters, J. A., Faccenda, E., Harding, S. D., Pawson, A. J., Sharman, J. L., Southan, C., Davies, J. A. (2017). THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors. British Journal of Pharmacology, 174, S17-S129. https://doi.org/10.1111/bph.13878 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1111/bph.13878 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Wiley at https://doi.org/10.1111/bph.13878 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2017/18: G protein-coupled receptors. British Journal of Pharmacology (2017) 174, S17–S129 THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: G protein-coupled receptors Stephen PH Alexander1, Arthur Christopoulos2, Anthony P Davenport3, Eamonn Kelly4, Neil V Marrion4, John A Peters5, Elena Faccenda6, Simon D Harding6,AdamJPawson6, Joanna L Sharman6, Christopher Southan6, Jamie A Davies6 and CGTP Collaborators 1 School of Life Sciences, -
The Effects of Prenatal Exposure to Altered Melatonin Levels on Hippocampal Gene Expression in the Male Rat" (2012)
Bucknell University Bucknell Digital Commons Honors Theses Student Theses Spring 2012 The ffecE ts of Prenatal Exposure to Altered Melatonin Levels on Hippocampal Gene Expression in the Male Rat Anna Uehara Bucknell University Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses Part of the Behavioral Neurobiology Commons, and the Developmental Neuroscience Commons Recommended Citation Uehara, Anna, "The Effects of Prenatal Exposure to Altered Melatonin Levels on Hippocampal Gene Expression in the Male Rat" (2012). Honors Theses. 124. https://digitalcommons.bucknell.edu/honors_theses/124 This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. iv ACKNOWLEDGEMENTS I would like to thank Carmen Acuna, PhD, for her assistance with statistical analysis of the data for this study. I am also grateful for the support of Elizabeth Marin, PhD, in helping me with my writing skills. I would also like to offer special thanks to Joshua Ripple, B.S., for inviting me into his melatonin project to which I have grown a fond interest for. Moreover, words cannot express the gratitude I have for my academic and research advisor, Kathleen C. Page, PhD, for all of her assistance in helping me understand my results and articulate my findings. Without her never-ending assistance, I would not be the student and scientist that I am now. Finally, I would like to thank my parents and friends for their undying support and assistance that has brought me to Bucknell University and allowed me to challenge myself through participating in undergraduate research. -
Gene Structures, Biochemical Characterization and Distribution of Rat Melatonin Receptors
J Physiol Sci (2009) 59:37–47 DOI 10.1007/s12576-008-0003-9 ORIGINAL PAPER Gene structures, biochemical characterization and distribution of rat melatonin receptors Hirotaka Ishii Æ Nobuyuki Tanaka Æ Momoko Kobayashi Æ Masakatsu Kato Æ Yasuo Sakuma Received: 1 June 2008 / Accepted: 10 October 2008 / Published online: 6 December 2008 Ó The Physiological Society of Japan and Springer 2008 Abstract G-protein coupled receptors for the pineal GnRH neurons from either sex. This study delineates the hormone melatonin have been partially cloned from rats. gene structures, fundamental properties, and distribution of However, insufficient information about their cDNA both rat melatonin receptor subtypes, and may offer sequences has hindered studies of their distribution and opportunities to assess the physiological significance of physiological responses to melatonin using rats as an ani- melatonin in rats. mal model. We have cloned cDNAs of two rat membrane melatonin receptor subtypes, melatonin receptor 1a (MT1) Keywords Melatonin Á Melatonin receptors Á and melatonin receptor 1b (MT2), using a rapid amplifi- GnRH neuron cation of cDNA end (RACE) method. The rat MT1 and MT2 cDNAs encode proteins of 353 and 364 amino acids, Abbreviations respectively, and show 78–93% identities with the human 125I-Mel 2-[125I]-Iodomelatonin and mouse counterparts. Stable expression of either rat DMSO Dimethyl sulfoxide MT1 or MT2 in NIH3T3 cells resulted in high affinity 2- EGFP Enhanced green fluorescent protein 125 125 [ I]-iodomelatonin ( I-Mel) binding (Kd = 73.2 ± 9.0 GABA c-Aminobutyric acid and 73.7 ± 2.9 pM, respectively), and exhibited a similar GnRH Gonadotropin-releasing hormone rank order of inhibition of specific 125I-Mel binding by five I-Mel 2-Iodomelatonin ligands (2-iodomelatonin [ melatonin [ 6-hydroxymela- mGAPDH Mouse glyceraldehyde-3-phosphate tonin [ luzindole [ N-acetyl-5-hydroxytryptamine). -
N-Acetylserotonin Activates Trkb Receptor in a Circadian Rhythm
N-acetylserotonin activates TrkB receptor in a circadian rhythm Sung-Wuk Janga, Xia Liua, Sompol Pradoldeja, Gianluca Tosinib, Qiang Changc, P. Michael Iuvoned, and Keqiang Yea,1 aDepartment of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322; bNeuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310; cDepartment of Genetics and Neurology, Waisman Center, University of Wisconsin, Madison, WI 53705-2280; and dDepartments of Ophthalmology and Pharmacology, Emory University School of Medicine, Atlanta, GA 30322 Edited* by Solomon Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved December 30, 2009 (received for review October 29, 2009) Brain-derived neurotrophic factor (BDNF) is a cognate ligand for low-affinity melatonin receptor, is not a GPCR and represents a the TrkB receptor. BDNF and serotonin often function in a cooper- binding site in quinone reductase 2 (13). Although melatonin is a ative manner to regulate neuronal plasticity, neurogenesis, and potent, full agonist of MT1 and MT2 receptors, the MT3 binding neuronal survival. Here we show that NAS (N-acetylserotonin) site has a higher affinity for NAS than for melatonin. Thus, MT3 swiftly activates TrkB in a circadian manner and exhibits antidepres- may act as an NAS receptor. NAS is widely distributed within the sant effect in a TrkB-dependent manner. NAS, a precursor of mela- brainstem, cerebellum, and hippocampus, and in the brainstem it tonin, is acetylated from serotonin by AANAT (arylalkylamine N- is contained within the reticular formation nuclei and motor acetyltransferase). NAS rapidly activates TrkB, but not TrkA or TrkC, nuclei (14). NAS resides in the specific brain areas separate from in a neurotrophin- and MT3 receptor-independent manner. -
Andrew Tsotinis Date of Birth: 03/03/1958 Place of Birth: Athens, Greece Nationality: Greek Home Address: 28 Pontou St
CURRICULUM VITAE PERSONAL DETAILS Name: Andrew Tsotinis Date of Birth: 03/03/1958 Place of Birth: Athens, Greece Nationality: Greek Home Address: 28 Pontou St. Drosia, Athens 145 72 Greece Tel. +30210 7274812 Professor at the University of Athens - Faculty of Pharmacy - Department of Pharmaceutical Chemistry EDUCATION 1984-1988 Ph D in Synthetic Organic Chemistry. University of London, U.K. 1979-1983 BS major in Chemistry. The University of North Carolina at Charlotte, U.S.A. 1976-1978 Advanced Technology Centre, Athens, Greece - Two "O" levels: Physics, English. Two "A" levels: Chemistry, Mathematics. 1970-1976 14th High School, Athens, Greece High School Leaving Certificate. SCHOLARSHIPS 1985-1986 Franz Sondheimer Bursary Schilizzi Foundation Award 1986-1987 Franz Sondheimer Bursary 1994 NHRF/Royal Society Award 1995 NHRF/Royal Society Award PROFESSIONAL AFFILIATIONS Member, American Chemical Society. Member, Greek Chemical Society. Permanent member, Convocation of the University of London. PUBLICATIONS 1] Peter J. Garratt and Andrew Tsotinis "Alternative Syntheses and Diels-Alder Reactions of 2,3-Bis(trimethylsilyl)buta-1,3-Diene". Tetrahedron Lett., 1986, 27, 2761. 2] Peter J. Garratt and Andrew Tsotinis "(Z,Z)-2,3-Bis(trimethylsilyl)-1,4-dibromo- and 2,3-Bis(trimethylsilyl)-1,1,4,4-tetrabromobuta-1,3-Dienes. Synthesis and Diels-Alder Reactions". Tetrahedron Lett., 1988, 29, 1833. 3] Andrew Tsotinis "Synthetic studies on strained annelated cyclopropanes", Ph D Thesis, University of London (Supervisor: Prof. P. J. Garratt), 1988, 338 pp. 4] Peter J. Garratt and Andrew Tsotinis "Preparation and reactions of trimethylsilylcyclopropenes. Synthesis of in-out tricyclic[n.3.2.02,4] compounds, potential precursors to cyclopropaparacyclophanes". -