Melatonin's Impact on Antioxidative and Anti-Inflammatory

Total Page:16

File Type:pdf, Size:1020Kb

Melatonin's Impact on Antioxidative and Anti-Inflammatory biomolecules Review Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease 1, 2, 1 Diana Maria Chitimus y, Mihaela Roxana Popescu y , Suzana Elena Voiculescu , Anca Maria Panaitescu 3, Bogdan Pavel 1, Leon Zagrean 1 and Ana-Maria Zagrean 1,* 1 Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; [email protected] (D.M.C.); [email protected] (S.E.V.); [email protected] (B.P.); [email protected] (L.Z.) 2 Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania; [email protected] 3 Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania; [email protected] * Correspondence: [email protected] These authors contributed equally to the work. y Received: 1 July 2020; Accepted: 18 August 2020; Published: 20 August 2020 Abstract: There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies. Keywords: melatonin; antioxidant; homeostasis; allostasis; maternal-fetal signaling; COVID 19; cardiovascular; neurodegenerative 1. Introduction Melatonin is a pineal hormone produced and released in relation to the circadian rhythm, while also synthesized in extrapineal tissues, like heart, liver, placenta, skin, kidney, gut, etc. [1–4]. Melatonin is an important regulator of physiologic processes and a guardian of body homeostatic balance. Its level varies during the day from 5 to 200 pg/mL [5]. Melatonin has antioxidant effects exerted through direct and indirect mechanisms that make this unrivaled multitasking molecule an endogenous protector against highly toxic oxygen- and nitrogen-derived free radicals. The main mechanisms of action attributed to melatonin are free radical Biomolecules 2020, 10, 1211; doi:10.3390/biom10091211 www.mdpi.com/journal/biomolecules Biomolecules 2020, 10, x FOR PEER REVIEW 2 of 30 Biomolecules 2020, 10, 1211 2 of 28 derived free radicals. The main mechanisms of action attributed to melatonin are free radical scavenging, endogenous antioxidative enzymes stimulation, and improving the efficiency of other scavenging,antioxidants. endogenous Melatonin’s antioxidative particularity is enzymes that together stimulation, with its andmetabolites, improving which the eactffi ciencyas antioxidants of other antioxidants.themselves, creates Melatonin’s an antioxidant particularity cascade is that that together yields with radical its metabolites, scavenger products which act [6] as,antioxidants limiting the themselves,oxidative damage creates through an antioxidant a variety cascade of mechanisms that yields [7,8] radical. Thus, scavenger the radical products quencher [6], limitingproperty the of oxidativemelatonin damage against the through hydroxyl a variety radical of (OH) mechanisms is superior [7 ,to8]. that Thus, of glutathione the radical, while quencher its action property against of melatoninthe peroxyl against radical the (ROO hydroxyl) involves radical single (OH) electron is superior transfer, to that hydrogen of glutathione, atom transfer, while itsor radical action against adduct theformation peroxyl [8,9] radical. Besides (ROO) lowering involves the single amount electron of free transfer, radicals, hydrogen melatonin atom can transfer, also interact or radical with adduct non- formation [8,9]. Besides lowering the amount of free radicals, melatonin can also interact with radical oxidants such as hydrogen peroxide (H2O2), singlet oxygen (1O2), and peroxynitrite (HNOO) 1 non-radical[6,10]. Melatonin oxidants is effective such as in hydrogen inhibiting peroxide metal-induced (H2O2), oxidation, singlet oxygen as it was ( O reported2), and peroxynitrite for copper, a (HNOO)redox generating [6,10]. Melatonin metal, but is it e alsoffective chelates in inhibiting iron, lead, metal-induced zinc, and aluminum oxidation, [8]. as it was reported for copper,Along a redox with generating its free radical metal, scavenging but it also chelatesproperties, iron, melatonin lead, zinc, protects and aluminum the mitochondria [8]. against oxidativeAlong stress with itsby free influencing radical scavenging the mitochondrial properties, membrane melatonin potential protects, thethus mitochondria facilitating electron against oxidativetransfer antioxidant stress by influencing processes the within mitochondrial the cell [11] membrane. The roles potential, of melatonin thus facilitating within mitochondria electron transfer are antioxidantexemplified processes in Figure within 1. the cell [11]. The roles of melatonin within mitochondria are exemplified in Figure1. Glut/SLC2A Figure 1. The roles of melatonin within the mitochondria. Melatonin is transported into mitochondria throughFigure 1. PEPT1The roles/2 oligopeptideof melatonin within and Glut the/ SLC2Amitochondria. transporters, Melatonin but is ittransported is also synthesized into mitochondria within mitochondriathrough PEPT1/2 [12,13 ].oligopeptide Melatonin lowers and Glut/SLC2A the formation transporters, of free radicals but and it protectsis also ATPsynthesized synthesis within at the mitochondrialmitochondria level.[12,13] It. scavengesMelatoninfree lowers oxygen the (ROS)formation and nitrogenof free radicals (RNS) reactiveand protects species, ATP by synthesis preventing at mitochondrialthe mitochondrial apoptosis level. andIt scavenges disruption free of oxygen the electron (ROS) transport and nitrogen chain. (RNS) Melatonin reactive interacts species, with by MT1preventing and MT2 mitochondrial melatonin receptors, apoptosis inhibits and disruption pro-apoptosis of the protein electron synthesis, transport and thechai subsequentlyn. Melatonin cytochromeinteracts with Cleakage MT1 and at theMT2 level melatonin of the membrane. receptors, inhibits It also protects pro-apoptosis mitochondrial protein DNA synthesis, and prevents and the thesubsequently opening of cytochrome the mitochondrial C leakage permeability at the level transition of the membrane. pore (mPTP) It also [13 protects]. mitochondrial DNA and prevents the opening of the mitochondrial permeability transition pore (mPTP) [13]. Melatonin works through both receptor-independent and receptor-dependent antioxidant processes.Melatonin Through works its receptor-mediated through both receptor actions,- melatoninindependent either and inhibits receptor pro-oxidative-dependent enzymes antioxidant such asprocesses. xanthine Through oxidase orits enhances receptor- themediated activity actions, of superoxide melatonin dismutase either inhibits (SOD), glutathionepro-oxidative peroxidase, enzymes andsuch catalase as xanthine [12,13 ].oxidase or enhances the activity of superoxide dismutase (SOD), glutathione peroxidaseGrowing, and evidence catalase supports [12,13]. the anti-inflammatory role of melatonin, both in acute and chronic inflammationGrowing processes. evidence However,supports mostthe anti of- theinflammatory data are obtained role of frommelatonin,in vitro bothand in vivoacuteexperimental and chronic studies,inflammation while clinicalprocesses. studies However, have proven most inconsistentof the data resultsare obtained [14]. Administration from in vitro ofand exogenous in vivo melatoninexperimental in animal studies, studies, while clinical prior to studies acute conditions,have proven have inconsistent shown a results decrease [14] in. theAdministration inflammatory of response,exogenous a reductionmelatonin ofin pro-inflammatoryanimal studies, prior cytokines, to acute interleukine-1 conditions, βhave(IL-1 shownβ), and a tumordecrease necrosis in the factor-inflammatoryα (TNF-α response,), and an increase a reduction in anti-inflammatory of pro-inflammatory cytokine cytokines, IL-4 levels interleukine in serum [15-,161β]. ( InIL- addition,1β), and melatonintumor necrosis inhibits factor the- expressionα (TNF-α), of and cyclooxygenase an increase in (COX) anti-inflammatory and inducible cytokine nitric oxide IL-4 synthase levels in (iNOS), serum Biomolecules 2020, 10, x FOR PEER REVIEW 3 of 30 Biomolecules 2020
Recommended publications
  • Neuroscience Product Handbook
    www.MedChemExpress.com MedChemExpressMedChemExpress Neuroscience Product Handbook Pain Biological Rhythms and Sleep Neuromuscular Diseases AutonomicNeuroendocrine Somatosensation metabolism Regulation Processes transduction Behavioral Neuroethology Neuroendocrin feature soding Food Intake oral and speech From the itineraries of and Energy Balance vocal/social 8,329 attendees Touch Thirst and communication Water Balance social behavior Development peptides at the 2018 SfN meeting Ion Channels and Evolution Stress and social cognition opiates the Brain monoamines Spinal Cord Adolescent Development PTSD Injury and Plasticity Postnatal autism Developmental fear Neurogenesis Disorders human social Mood cognition ADHD, Disorders Human dystexia Anxiety Cognition and Neurogenesis depression Appetitive Behavior and Gllogenesis bipolar and Aversive timing Development of Motor, Schizophrenia Learning perception Sensory,and Limbic Systems perceptual learning Other Psychiatric executive attention Stem Cells... mitochondria Emotionfunction human Parkinson's Glial Mechanisms biomarkers reinforcement long-term Disease Synaptogenesis human human memory Huntington's Transplant and ... Development Neurotransm., Motivation decisions working and Regen Axon and Transportors, memory PNS G-Protein...Signaling animal Dendrite reward decision visual Other Movement Development Receptors learning and memory model microglia making decisions Disorders Demyelinating NMDA dopamine ataxia Disorders place cells, GABA, LT P Synaptic grid cells gly... Plasticity striatum
    [Show full text]
  • Sleep Disorders & Medicine
    Nava Zisapel et al., J Sleep Disord Ther 2015, 4:4 http://dx.doi.org/10.4172/2167-0277.S1.002 Annual Summit on Sleep Disorders & Medicine August 10-12, 2015 San Francisco, USA Piromelatine: A novel melatonin-serotonin agonist for the treatment of insomnia disorder and neurocognitive comorbidities Nava Zisapel1 and Moshe Laudon2 1Tel Aviv University, Israel 2Neurim Pharmaceuticals Ltd., Israel nsomnia affects 30%-50% of the general population and even more so (63%) among patients with mild cognitive impairments I(MCI). Alzheimer’s disease (AD) risk among insomnia patients is approximately 3 fold that of good sleepers. Furthermore, poor sleep quality is associated with faster cognitive decline and may be an early marker of cognitive decline in mid life. Improvement of sleep may be critically important for maintaining or enhancing cognitive function in patients with MCI or AD. Current hypnotic medications (benzodiazepines and benzodiazepines-like) are associated with cognitive and memory impairments, increased risk of falls, accidents and dependency. Melatonin receptors agonists are safe and effective drugs for primary insomnia and circadian rhythm sleep disorders and are potentially useful for cognition and sleep in. Piromelatine is a novel investigational MT1\MT2 and 5HT1A\D receptors agonist developed for primary and co-morbid insomnia. In Phase-I studies it demonstrated good oral bioavailability (Elimination half-life 2.8±1.4 hours), good safety & tolerability profile across a wide dose range and provided the first indication for beneficial effects on sleep maintenance. In a Phase-II study in insomnia patients, piromelatine demonstrated significant improvements in sleep maintenance based on objective assessments (polysomnography recorded wake after sleep onset, sleep efficiency and total sleep time) and good safety profile with no detrimental effects on next-day psychomotor performance and memory.
    [Show full text]
  • Nourishing and Health Benefits of Coenzyme Q10 – a Review
    Czech J. Food Sci. Vol. 26, No. 4: 229–241 Nourishing and Health Benefits of Coenzyme Q10 – a Review Martina BOREKOVÁ1, Jarmila HOJEROVÁ1, Vasiľ KOPRDA1 and Katarína BAUEROVÁ2 1Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic; 2Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Slovak Republic Abstract Boreková M., Hojerová J., Koprda V., Bauerová K. (2008): Nourishing and health benefits of coen- zyme Q10 – a review. Czech J. Food Sci., 26: 229–241. Coenzyme Q10 is an important mitochondrial redox component and endogenously produced lipid-soluble antioxidant of the human organism. It plays a crucial role in the generation of cellular energy, enhances the immune system, and acts as a free radical scavenger. Ageing, poor eating habits, stress, and infection – they all affect the organism’s ability to provide adequate amounts of CoQ10. After the age of about 35, the organism begins to lose the ability to synthesise CoQ10 from food and its deficiency develops. Many researches suggest that using CoQ10 supplements alone or in com- bination with other nutritional supplements may help maintain health of elderly people or treat some of the health problems or diseases. Due to these functions, CoQ10 finds its application in different commercial branches such as food, cosmetic, or pharmaceutical industries. This review article gives a survey of the history, chemical and physical properties, biochemistry and antioxidant activity of CoQ10 in the human organism. It discusses levels of CoQ10 in the organisms of healthy people, stressed people, and patients with various diseases. This paper shows the distribution and contents of two ubiquinones in foods, especially in several kinds of grapes, the benefits of CoQ10 as nutritional and topical supplements and its therapeutic applications in various diseases.
    [Show full text]
  • The Structure and Antioxidant Properties
    materials Review Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties Monika Parcheta 1 , Renata Swisłocka´ 1,* , Sylwia Orzechowska 2,3 , Monika Akimowicz 4 , Renata Choi ´nska 4 and Włodzimierz Lewandowski 1 1 Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; [email protected] (M.P.); [email protected] (W.L.) 2 Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland; [email protected] 3 M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland 4 Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; [email protected] (M.A.); [email protected] (R.C.) * Correspondence: [email protected] Abstract: Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular ´ Citation: Parcheta, M.; Swisłocka, R.; mechanism of antioxidant processes. Our researches and sparing literature data prove that the Orzechowska, S.; Akimowicz, M.; ligand antioxidant properties complexed by selected metals may significantly affect the free radical Choi´nska,R.; Lewandowski, W.
    [Show full text]
  • A Review of Dietary (Phyto)Nutrients for Glutathione Support
    nutrients Review A Review of Dietary (Phyto)Nutrients for Glutathione Support Deanna M. Minich 1,* and Benjamin I. Brown 2 1 Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA 2 BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK * Correspondence: [email protected] Received: 8 July 2019; Accepted: 23 August 2019; Published: 3 September 2019 Abstract: Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status.
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]
  • Potential Adverse Effects of Resveratrol: a Literature Review
    International Journal of Molecular Sciences Review Potential Adverse Effects of Resveratrol: A Literature Review Abdullah Shaito 1 , Anna Maria Posadino 2, Nadin Younes 3, Hiba Hasan 4 , Sarah Halabi 5, Dalal Alhababi 3, Anjud Al-Mohannadi 3, Wael M Abdel-Rahman 6 , Ali H. Eid 7,*, Gheyath K. Nasrallah 3,* and Gianfranco Pintus 6,2,* 1 Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon; [email protected] 2 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; [email protected] 3 Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; [email protected] (N.Y.); [email protected] (D.A.); [email protected] (A.A.-M.) 4 Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; [email protected] 5 Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon; [email protected] 6 Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates; [email protected] 7 Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon * Correspondence: [email protected] (A.H.E.); [email protected] (G.K.N.); [email protected] (G.P.) Received: 13 December 2019; Accepted: 15 March 2020; Published: 18 March 2020 Abstract: Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols.
    [Show full text]
  • Alterations of Endogenous Hormones, Antioxidant Metabolism, and Aquaporin Gene Expression in Relation to Γ-Aminobutyric Acid-Regulated Thermotolerance in White Clover
    antioxidants Article Alterations of Endogenous Hormones, Antioxidant Metabolism, and Aquaporin Gene Expression in Relation to γ-Aminobutyric Acid-Regulated Thermotolerance in White Clover Hongyin Qi †, Dingfan Kang †, Weihang Zeng †, Muhammad Jawad Hassan, Yan Peng, Xinquan Zhang , Yan Zhang, Guangyan Feng and Zhou Li * College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (H.Q.); [email protected] (D.K.); [email protected] (W.Z.); [email protected] (M.J.H.); [email protected] (Y.P.); [email protected] (X.Z.); [email protected] (Y.Z.); [email protected] (G.F.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Persistent high temperature decreases the yield and quality of crops, including many important herbs. White clover (Trifolium repens) is a perennial herb with high feeding and medicinal ◦ value, but is sensitive to temperatures above 30 C. The present study was conducted to elucidate the impact of changes in endogenous γ-aminobutyric acid (GABA) level by exogenous GABA Citation: Qi, H.; Kang, D.; Zeng, W.; pretreatment on heat tolerance of white clover, associated with alterations in endogenous hormones, Jawad Hassan, M.; Peng, Y.; Zhang, antioxidant metabolism, and aquaporin-related gene expression in root and leaf of white clover plants X.; Zhang, Y.; Feng, G.; Li, Z. under high-temperature stress. Our results reveal that improvement in endogenous GABA level in Alterations of Endogenous leaf and root by GABA pretreatment could significantly alleviate the damage to white clover during Hormones, Antioxidant Metabolism, high-temperature stress, as demonstrated by enhancements in cell membrane stability, photosynthetic and Aquaporin Gene Expression in capacity, and osmotic adjustment ability, as well as lower oxidative damage and chlorophyll loss.
    [Show full text]
  • Melatonin Receptor Agonist Piromelatine Ameliorates Impaired Glucose Metabolism in Chronically Stressed Rats Fed a High-Fat Diet
    1521-0103/364/1/55–69$25.00 https://doi.org/10.1124/jpet.117.243998 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 364:55–69, January 2018 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Melatonin Receptor Agonist Piromelatine Ameliorates Impaired Glucose Metabolism in Chronically Stressed Rats Fed a High-Fat Diet Jun Zhou, Deng Wang, XiaoHong Luo, Xu Jia, MaoXing Li, Moshe Laudon, RuXue Zhang, and ZhengPing Jia College of Pharmacy, Lanzhou University, Lanzhou, PR China (J.Z., M.X.L, R.X.Z, Z.P.J.); Xi’an Daxing Hospital, Shaanxi, PR China (D.W.); Lanzhou General Hospital of PLA, Lanzhou, PR China (J.Z., X.L., M.X.L, R.X.Z, Z.P.J.); Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China (X.J.); and Drug Discovery, Neurim Pharmaceuticals Ltd., Tel-Aviv, Israel (M.L.) Downloaded from Received July 19, 2017; accepted October 6, 2017 ABSTRACT Modern lifestyle factors (high-caloric food rich in fat) and daily combined with CS (CF). The results showed that piromelatine chronic stress are important risk factors for metabolic distur- prevented the suppression of body weight gain and energy jpet.aspetjournals.org bances. Increased hypothalamic-pituitary-adrenal (HPA) axis intake induced by CF and normalized CF-induced hyperglycemia activity and the subsequent excess production of glucocorticoids and homeostasis model assessment–IR index, which suggests (GCs) in response to chronic stress (CS) leads to increases in that piromelatine prevented whole-body IR. Piromelatine also metabolic complications, such as type 2 diabetes and insulin prevented CF-induced dysregulation of genes involved in resistance (IR).
    [Show full text]
  • Dietary Antioxidants and L-Carnitine – a Clever Combination to Combat Oxidative Stress in Farm Animals
    DIETARY ANTIOXIDANTS AND L-CARNITINE – a clever combination to combat oxidative stress in farm animals By Tanja Diedenhofen and Joseane Willamil, Lohmann Animal Health GmbH OXIDATIVE STRESS: DEVELOPMENT – DEFINITION – mycotoxins are described in literature as factors for oxidative stress. A DETRIMENTAL EFFECTS further factor which is directly linked to feeding is the intake of oxidised For the majority of organisms, oxygen is absolutely vital: animals, plants fatty acids. and a number of microorganisms need oxygen to produce energy. Oxidative stress plays an important role in many degenerative Oxygen-dependent redox-reactions, like energy metabolism, result illnesses. It is assumed that the majority of illnesses in humans and in the formation of reactive oxygen species (ROS). These so-called animals are linked at various stages of their development to the formation “free radicals” are very unstable due to their unpaired electrons and and metabolism of free radicals. (Lohmann Information, 01/2005) are thus highly reactive. If free radicals meet up with proteins, fatty acids, carbohydrates and DNA in the organism, they can react with INFLUENCE OF DIETARY ANTIOXIDANTS ON MEAT these and damage them. This damage can lead to the impairment of QUALITY many processes in the organism, e.g. growth, immune competence Feeding oxidised feedingstuffs means the animals are exposed to a and reproduction. Furthermore, the oxidation of membrane-bound high number of free radicals, inducing oxidative stress. It also leads to polyunsaturated fatty acids (PUFA) influences the composition, structure decreased vitamin E content in the tissue which has a negative impact and properties of membranes, such as fluidity and permeability, as well on animal health and the quality of animal products.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Diapositiva 1
    New treatment options for sleep disorders Chairs: Gabriella Gobbi and Anton Y. Bespalov . Novel selective melatonin MT2 receptor agonist in the treatment of insomnia . Gabriella Gobbi, Canada . Orexin receptor antagonists and insomnia treatment: state of the art . Anthony Gotter, US . Development of piromelatine, a novel multimodal sleep medicine . Nava Zisapel, Israel . The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders Abstract . Jian Sheng Lin , France Prevalence insomnia in Canada and Europe Canadian survey1 European survey2 on sleep and related factors on insomnia and sleep symptoms (N=2000) (N=25,579) 50 50 40.4% 40 40 34.5% 30 30 Respondents (%) Respondents (%) 20 20 13.4% 9.8% 10 10 0 0 Insomnia symptoms Insomnia disorder Insomnia symptoms Insomnia disorder 1. Morin et al. Can J Psychiatry. 2011;56:540-548; 2. Ohayon et al. Sleep Med. 2009;10:952-960. Prevalence in the American Insomnia Survey . 10,094 members of a managed health care plan . Prevalence 23.6%* . Insomnia symptoms: about 45% . Risk of insomnia higher in: . Women vs men . Older age vs younger groups (18-64 vs >65 y) . Disabled or retired vs employed . Shift workers vs day workers . Obese vs normal BMI Diagnosis based on any one of 3 systems: DSM-IV-TR, ICD-10, RDC/ICSD-2. *Insomnia assessed using Brief Insomnia Questionnaire (BIQ). Roth et al. Biol Psychiatry. 2011;69:592-600. Insomnia and Societal Burden •Increased risks of depression and alcohol Psychiatric dependence1,2 •Increased risks of hypertension, metabolic Health syndrome, and coronary heart disease2 •Decreased productivity and increased Occupational absenteeism1,2 Economic •Increased health care costs1,2 Public safety •Increased risks of accidents1 1.
    [Show full text]