Focus Sci. Review Article Feb 2016, Volume 2, Issue 1 Melatonergic Treatment: Focus on Metabolism and Chronobiology Rüdiger Hardeland 1, * 1 Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany * Corresponding author: Johann Friedrich Blumenbach Institute of Zoology and An- thropology, University of Göttingen, Berliner Str. 28, D-37073 Göttingen, Germany. Tel: +49-551395414. E-mail:
[email protected] Submitted: 01.10.2016 Abstract Accepted: 02.12.2016 Introduction: Melatonin is produced in various organs, but its preferentially nocturnal synthesis and release by the pineal gland is decisive for its chronobiological actions. Keywords: The short half-life of circulating melatonin has been reason for developing synthetic Agomelatine melatonergic agonists. With regard to age- and disease-related dysfunction of the Circadian melatonergic system, treatment with melatonin or its synthetic analogs may be used for Melatonin alleviating health problems with a respective etiology. This review addresses limitations Kynuramine arising from drug-specific metabolism and disregarded chronobiological rules. Ramelteon Metabolism: Differences are illustrated by comparing the metabolism of melatonin and two approved synthetic melatonergic agonists, ramelteon and agomelatine. Apart from © 2016. Focus on Sciences hydroxylation and dealkylation reactions, melatonin can be converted to methoxylated kynuramines, a route absent in the two synthetic drugs. An unsual property is present in the ramelteon metabolite M-II, which still displays melatonergic activity, but attains 30 to 100 times higher levels than the parent compound. Two double-hydroxylated agomelatine metabolites may be involved in sometimes occurring hepatotoxicity. Chronobiology of Melatonergic Drugs: Sleep latency facilitation and readjustment of circadian rhythms require only short actions.