Full Issue 42(1)
Total Page:16
File Type:pdf, Size:1020Kb
ISSN 0392-6672 International Journal of Speleology Official Journal of the Union Internationale de Spéléologie Volume 42 (1) - January 2013 International Journal of Speleology Scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it Volume 42(1), January 2013 Original papers Enrique P. Sánchez-Cañete, Penélope Serrano-Ortiz, Francisco Domingo, and Andrew S. Kowalski Cave ventilation is influenced by variations in the CO2-dependent virtual temperature ................................................. 1-8 Angela M. Garcia-Sanchez, Concepcion Ariza, Jose M. Ubeda, Pedro M. Martin-Sanchez, Valme Jurado, Fabiola Bastian, Claude Alabouvette, and Cesareo Saiz-Jimenez Free-living amoebae in sediments from the Lascaux Cave in France ............................................................................9-13 Valquíria Aparecida Alves Bastos, Rodrigo Lopes Ferreira, Daniel Cardoso de Carvalho, Marina Lages Pugedo, and Luciana de Matos Alves Pinto The cave environment influencing the lipid profile and hepatic lipogenesis of the fish Ancistrus cryptophthalmus Reis, 1987 (Siluriformes: Loricariidae) ..................................................................................................................................15-23 Emma Petrella and Fulvio Celico Mixing of water in a carbonate aquifer, southern Italy, analysed through stable isotope investigations ....................25-33 Naowarat Cheeptham, Tara Sadoway, Devon Rule, Kent Watson, Paul Moote, Laiel C. Soliman, Nicholas Azad, Kingsley K. Donkor, and Derrick Horne Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery ..............................................35-47 Andrew C. Smith, Peter M. Wynn, and Philip A. Barker Natural and anthropogenic factors which influence aerosol distribution in Ingleborough Show Cave, UK .................49-56 Bianca Rantin and Maria Elina Bichuette Phototactic behaviour of subterranean Copionodontinae Pinna, 1992 catfishes (Siluriformes, Trichomycteridae) from Chapada Diamantina, central Bahia, northeastern Brazil ..................................................................................57-63 Iva Tomova, Irina Lazarkevich, Anna Tomova, Margarita Kambourova, and Evgenia Vasileva-Tonkova Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria.................................................................................................................................................65-76 Karen J. Vanderwolf, David Malloch, Donald F. McAlpine, and Graham J.Forbes A world review on fungi, yeasts, and slime molds in caves .........................................................................................77-96 World Karst Science Reviews Cave and Karst Science of the British Research Association Volume 39(2), 2012.................................................................................................................................................... I Die Höhle des Verbands Österreichischer Höhlenforscher und des Verbands der Deutschen Höhlen- und Karstforscher e.V. Volume 63(1-4), 2012 ................................................................................................................................................ I Journal of Cave and Karst Studies of the National Speleological Society Volume 74(1), April 2012 .......................................................................................................................................... II Volume 74(2), August 2012 ....................................................................................................................................... II Volume 74(3), December 2012 ................................................................................................................................. III International Journal of Speleology 42 (1) 1-8 Tampa, FL (USA) January 2013 Available online at scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it International Journal of Speleology Official Journal of Union Internationale de Spéléologie Cave ventilation is influenced by variations in the CO2-dependent virtual temperature Enrique P. Sánchez-Cañete1,2*, Penélope Serrano-Ortiz1,2, Francisco Domingo1,3, and Andrew S. Kowalski2,4 1 Departamento de Desertificación y Geo-ecologia, EEZA-CSIC, Ctra. Sacramento s/n, 04120, La cañada de San Urbano, Almería, Spain 2 Centro Andaluz de Medio Ambiente (CEAMA), 18006, Granada, Spain 3 Departamento de Física Aplicada, Universidad de Granada, Av. Fuentenueva s/n, 18071 Granada, Spain 4 Universidad Almería, Departamento Biología Vegetal & Ecología, E-04120 Carrera Sacramento s/n, 04120, Almería, Spain Abstract: Dynamics and drivers of ventilation in caves are of growing interest for different fields of science. Accumulated CO2 in caves can be exchanged with the atmosphere, modifying the internal CO2 content, affecting stalagmite growth rates, deteriorating rupestrian paintings, or creating new minerals. Current estimates of cave ventilation neglect the role of high CO2 concentrations in determining air density – approximated via the virtual temperature (Tv) –, affecting buoyancy and therefore the release or storage of CO2. Here we try to improve knowledge and understanding of cave ventilation through the use of Tv in CO2-rich air to explain buoyancy for different values of temperature (T) and CO2 content. Also, we show differences between T and Tv for 14 different experimental sites in the vadose zone, demonstrating the importance of using the correct def inition of Tv to determine air buoyancy in caves. The calculation of Tv (including CO2 effects) is currently available via internet using an Excel template, requiring the input of CO2 (%), air temperature (ºC) and relative humidity (%). Keywords: buoyancy; carbon dioxide; caves; soil ventilation; ventilation; virtual temperature Received 26 June 2012; Revised 4 September 2012; Accepted 11 September 2012 Citation: Sánchez-Cañete E.P., Serrano-Ortiz P., Domingo F. and Kowalski A.S. 2013. Cave ventilation is inf luenced by variations in the CO2-dependent virtual temperature. International Journal of Speleology, 42 (1), 1-8. Tampa, FL (USA) ISSN 0392-6672 http://dx.doi.org/10.5038/1827-806X.42.1.1 INTRODUCTION al., 2009; Serrano-Ortiz et al., 2010; Sanchez-Cañete et al., 2011), modifying the internal CO2 content and There is currently growing interest in characterizing affecting stalagmite growth rates (Banner et al., 2007; storage and ventilation of CO2 in caves, both from Baldini et al., 2008), deteriorating rupestrian paintings external (atmospheric) and internal (speleological) (Fernández et al., 1986) and creating new minerals perspectives. Measurements of rising atmospheric (Badino et al., 2011). However due to the complexity th CO2 by Keeling (1960) since the mid-20 century and peculiarity of caves, as well as the variety of reveal that anthropogenic activities are causing CO2 meteorological conditions that determine the degree accumulation in the atmosphere and forcing global and timing of ventilation (Fairchild & Baker, 2012), warming. Soils are a large pool of terrestrial carbon such exchanges are not well understood and their (C), estimated to contain 2344 Pg C in solid form in contributions to regional atmospheric CO2 budgets the top 3 m (Jobbagy & Jackson, 2000) – three times remain unknown. the aboveground biomass C reservoir and double Estimation of cave ventilation can be realized by that of the atmosphere (Schlesinger, 1997) – and a number of means, the most common of which also have an enormous capacity to store gaseous has traditionally neglected the role of high CO2 CO2 in subsurface cracks, pores and cavities. The concentrations and requires ref inement. The drivers vadose zone is enriched in CO2 and some caves often implicated in the cave ventilation can be classif ied exceed 5% (volumetric CO2 fraction of 50,000 ppm; as either dynamic or static (Cigna, 1968). Dynamic Ek & Gewelt, 1985; Howarth & Stone, 1990; Denis drivers are defined by moving fluids such as water et al., 2005; Batiot-Guilhe et al., 2007; Benavente et or wind (Nachshon et al., 2012), while static drivers al., 2010) representing important air compositional include variations of pressure, temperature or air differences with respect to the external atmosphere, composition (water vapor, CO2, CH4, etc.). Ventilation currently near 395 ppm. Accumulated CO2 in caves rates can be measured directly using anemometers, can be exchanged with the atmosphere (Weisbrod et estimated indirectly through variations in Radon *[email protected], [email protected] Cave ventilation is influenced by the virtual temperature 2 content (Hakl et al., 1997; Faimon et al., 2006), or and thus can determine exactly when ventilation other tracer gases (de Freitas et al., 1982) or variations is possible, and therefore when a cave can release in air density. Most commonly, air density variations or store CO2. Also we represent Tv -explaining the are approximated to evaluate buoyancy according to relative buoyancy relevant for cave ventilation- for temperature differences between the internal (Tint ) and different values of T and CO2 content. Then, we show exterior atmosphere (Text ), neglecting air composition differences between T and Tv , -calculated both with and (Fernàndez-Cortes et al., 2006; Baldini et al., 2008; without accounting for CO2 content- for 14 different Liñan et al., 2008; Milanolo & Gabrovšek, 2009; experimental sites in the vadose zone, demonstrating Faimon et al., 2012). Faimon et al. (2012)