Grain Growth Behavior of Commercially Pure Titanium

Total Page:16

File Type:pdf, Size:1020Kb

Grain Growth Behavior of Commercially Pure Titanium Ti-2007 Science and Technology, edited by M. Ninomi, S. Akiyama, M. Ikeda, M. Hagiwara, K. Maruyama The Japan Institute of Metals (2007) Grain Growth Behavior of Commercially Pure Titanium Katsushi Matsumoto, Yasuaki Sugizaki Materials Research Laboratory, Kobe Steel Ltd., Kobe 651-2271, Japan Effects of annealing conditions on grain growth process for commercially pure titanium were studied focusing on the character of initial crystallographic texture. Hot slab of commercial purity titanium was cold-rolled to 86% reduction in thickness and recrystallized by annealing with several heating rate, holding temperature and holding time. The primary recrystallized texture were dependent on the heating rate; the sample of rapid heating condition was composed of {1215 }<1010> component as a major one, which was close to the major rolling texture component, and {0113}<2110> component as a minor one, whereas the sample of slow heating condition was composed of both {l215}<1010> and {0113}<2110> components. Moreover, the texture evolution during grain growth was dependent on the initial texture component; the samples of rapid heating condition developed the {0113}<2110> component alternatively, whereas the samples of slow heating condition developed those of both components, resulting in more evolved texture. These different texture changes were related to the spatial distribution of these oriented grains, which formed cluster, and the frequency of cluster increased with texture development. Moreover, the frequency of low angle boundary increased with texture development. These cluster formation was considered to play a role in texture development during grain growth. Keyword: commercially pure titanium, crystallographic texture, grain growth, scanning electron microscope/electron backscatter pattern technique (SEM/EBSP), grain boundary character 1. Introduction The final annealing for primary recrystallization and grain The demand for commercially pure titanium sheet has growth was performed under the following conditions. been increasing rapidly on a global scale in late years, Specimen A : heated rapidly (about 10K/s) up to 923, which is due to the extensive use for press-forming 1023 and 1123K held for 1.80 x 102 - 8.64 x 104s products such as instrument, mobile telephone, and Specimen B : heated slowly (about 10-2K/s) up to 923, housing of personal computer in addition to the existing 1023 and 1123K held for 1.80x 102 - 8.64x 105s main use for plate heat exchanger. Thus to respond to For specimen A, primary recrystallization was performed these new needs, development of the press formability of by air furnace at each temperature for 1.80 x 102s. commercially pure titanium sheet has been of much more Further annealing of specimen A for grain growth and all importance. annealing of specimen B were carried out by vacuum Press formability such as deep drawing and stretch furnace. Microstructure was investigated in the central forming is strongly influenced by microstructure such as portion of annealed specimens using a scanning electron grain size distribution and crystallographic texture. As for microscope /electron backscatter pattern technique (SEM/ commercially pure titanium sheet, these microstructures EBSP). are determined by annealing of cold rolled sheets. In 3. Results and discussion annealing process where recrystallization and grain growth 3.1 Changes of grain orientation distribution during occurs, it is true of hcp metals that primary grain growth recrystallization texture forms and changes drastically Figure 1. shows the initial texture represented by during following grain growth in fcc and bcc metals 1-3). In orientation distribution function (ODF) of specimen A and commercially pure titanium, the primary recrystallization B with short time annealing conditions. In this figure only texture characterized mainly by orientation of {1215} the f1=0° section of ODF is represented for the texture <1010>, which is close to the rolling texture, changes to change, since it contains major orientation components. For {0113}<2110> during grain growth4-7). However, further both specimens annealed at 923K, primary recrystallization information about mechanisms of evolution of these was completed and {1215}<1010> component which is orientation distribution and grain size distribution during characterized by {f1=0°, Φ=35°,f2=0°} was a major grain growth is needed to obtain the controlling concept of orientation component. With an increase in annealing these microstructural factors for manufacturing. temperature, these two specimens showed a different In the present paper, effects of annealing conditions on texture development; {0113} <2110> component which is grain growth process for commercially pure titanium were characterized by {f1=0°, Φ=35°,f2=30°} evolved studied focusing on the character of initial texture. predominantly in specimen A, whereas both these two orientation components developed equally in specimen B. 2. Experimental Procedure By using these specimens with short time annealing A hot rolled plate with a thickness of 3.5mm for ASTM conditions at each temperature as initial textures, additional grade 1 (Fe: 0.03%, O: 0.05%) was used for this long time annealing at each temperature for further grain investigation. This plate was annealed at 973K for 3.0 x 10 growth was performed and the results are shown in the 2s in order to be recrystallized. Subsequent cold rolling following paragraph. was carried out and a sheet with a thickness of 0.5mm was prepared. 901 Figure 2. Variation of volume fraction of recrystallized grain orientation Figure 1. Initial texture represented by ODF of specimen A and B components with the average grain size. (a) specimen A, (b) specimen B. evaluated from SEM-EBSP data with several annealing temperatures. Figure 2. shows the changes in volume fractions of {1215} <1010> and {0113}<2110> components during grain growth. In the present paper, the volume fraction of each orientation component was calculated for grains with a deviation of less than 15° from an exact each orientation, respectively. As for specimen A, the volume fraction of {0113}<2110> component increased with an increase in grain size, while that of {1215}<1010> component slightly increased regardless of almost the same volume fraction of these two orientation components at the first stage (923K-1. 8 x 102s). Especially for {0113}<2110> component, its volume fraction increased rapidly at early stage of grain growth but saturated as grain growth proceeded. Thus, it can be indicated that mechanisms of texture development changes on the way of grain growth. In contrast, as for specimen B, the rate of increase in the volume fraction of {0113}<2110> component decreased in comparison with specimen A, whereas the volume fraction of {1215}<1010> component increased in the same level as {0113}<2110> component as grain growth proceeded. Furthermore, in both specimens, it is found that there was no clear temperature dependence of changes in volume fractions of these two orientation components accompanied by changes in average grain sizes. To reveal the difference in the texture change behavior Figure 3. Variation of frequency of recrystallized grain orientation during grain growth, the changes in frequency of these two components with the average grain size. (a) specimen A, (b) specimen B. orientation grains were investigated, and results are shown in Figure 3. This figure indicates that these increase in {1215}<1010> grains in specimen A remained unchanged volume fraction of these two orientation components shown or slightly decreased regardless of slight increase in volume in Figure 2. corresponded to the increase in frequency of fraction of that. each orientation grain, respectively, except for {1215} To clarify the reason why texture evolved differently <1010> grain in specimen A. The frequency of during grain growth in these specimens, grain size 902 distribution was analyzed and results are shown in the following section. 3.2 Changes of grain size distribution during grain growth Figure 4. shows the grain size distribution of {1215} <1010> and {0113}<2110> components annealed at the initial stage (923K–1.8 x 102s) for specimen A and B. As for specimen A, there was a little difference in the distribution of grain size at the initial state among {1215} <1010>, {0113}<2110> and other orientation component excluding these two components; average grain size for { 0113 }<2110> grains was slightly larger than others and in particular, frequency of larger grain size than about 5µm for {0113}<2110> grains was higher than that for {1215} <1010> grains. On the other hand, as for the specimen B, there was no significant difference in grain size distributions between {1215}<1010> and {0113}<2110> grains. It is reported that these grains, which developed during grain growth, belonged to the larger size fraction at the end of primary recrystallization7). Thus, it can be considered that one of the reason for texture development of specimen A at the initial state is grain size effect. To clarify the difference in grain size distribution at the end of primary recrystallization, more detailed study of the primary recrystallization behavior of these two specimens is Figure 4. Grain size distribution of recrystallized grain orientation required. components. R orientation grain means the other grains excluding { Figure 5. shows the relationship between average grain 1215}<1010> and {0113}<2110> grains. (a) specimen A, 923K-1.8 x size and individual grain size of {1215}<1010> and 102s, d=3.7μm, (b) specimen B, 923K-1.8 x 102s, d=12.6μm. {0113}<2110> components during grain growth. As for specimen A, grain size of {0113}<2110> component, which evolved during grain growth, became smaller than average grain size as grain size increased, while that of {1215}<1010> component became larger than that of average and even {0113}<2110> components. On the other hand, as for specimen B, there was no remarkable difference among average grain size and these two orientation components. From the standpoint of only grain size effect, texture evolution as described in section 3.1 can not be correlated with these difference in grain size.
Recommended publications
  • Using Grain Boundary Irregularity to Quantify Dynamic Recrystallization in Ice
    Acta Materialia 209 (2021) 116810 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Using grain boundary irregularity to quantify dynamic recrystallization in ice ∗ Sheng Fan a, , David J. Prior a, Andrew J. Cross b,c, David L. Goldsby b, Travis F. Hager b, Marianne Negrini a, Chao Qi d a Department of Geology, University of Otago, Dunedin, New Zealand b Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, United States c Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States d Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China a r t i c l e i n f o a b s t r a c t Article history: Dynamic recrystallization is an important mechanical weakening mechanism during the deformation of Received 24 December 2020 ice, yet we currently lack robust quantitative tools for identifying recrystallized grains in the “migration” Revised 7 March 2021 recrystallization regime that dominates ice deformation at temperatures close to the ice melting point. Accepted 10 March 2021 Here, we propose grain boundary irregularity as a quantitative means for discriminating between recrys- Available online 15 March 2021 tallized (high sphericity, low irregularity) and remnant (low sphericity, high irregularity) grains. To this Keywords: end, we analysed cryogenic electron backscatter diffraction (cryo-EBSD) data of deformed polycrystalline High-temperature deformation ice, to quantify dynamic recrystallization using grain boundary irregularity statistics. Grain boundary ir- Grain boundary irregularity regularity has an inverse relationship with a sphericity parameter, , defined as the ratio of grain area Dynamic recrystallization and grain perimeter, divided by grain radius in 2-D so that the measurement is grain size independent.
    [Show full text]
  • Grain Growth During Spark Plasma and Flash Sintering of Ceramic Nanoparticles: a Review Rachman Chaim, Geoffroy Chevallier, Alicia Weibel, Claude Estournes
    Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review Rachman Chaim, Geoffroy Chevallier, Alicia Weibel, Claude Estournes To cite this version: Rachman Chaim, Geoffroy Chevallier, Alicia Weibel, Claude Estournes. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. Journal of Materials Science, Springer Verlag, 2018, vol. 53 (n° 5), pp. 3087-3105. 10.1007/s10853-017-1761-7. hal-01682331 HAL Id: hal-01682331 https://hal.archives-ouvertes.fr/hal-01682331 Submitted on 12 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 19431 To link to this article : DOI:10.1007/s10853-017-1761-7 URL : http://dx.doi.org/10.1007/s10853-017-1761-7 To cite this version : Chaim, Rachman and Chevallier, Geoffroy and Weibel, Alicia and Estournes, Claude Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review.
    [Show full text]
  • Grain Growth in Nanocrystalline Metal Thin Films Under in Situ Ion-Beam Irradiation
    Journal of ASTM International, Vol. 4, No. 8 Paper ID JAI100743 Available online at www.astm.org D. Kaoumi,1 A. T. Motta,1 and R. C. Birtcher2 Grain Growth in Nanocrystalline Metal Thin Films under In Situ Ion-Beam Irradiation ABSTRACT: In-situ observations in a transmission electron microscope ͑TEM͒ were used to study the microstructure evolution in metal Zr, Pt, Cu, and Au nanocrystalline thin films under ion-beam irradiation. Free-standing films were prepared by sputter deposition. Samples were irradiated in-situ at the Intermedi- ate Voltage Electron Microscope ͑IVEM͒ at Argonne National Laboratory with Ar and Kr ions to fluences in excess of 1016 ion/cm2. As a result of irradiation, grain growth was observed in all samples using Bright Field ͑BF͒ imaging in the TEM. The average grain size increased monotonically with ion fluence until it reached a saturation value. Similarly to thermal grain growth, the ion-irradiation induced grain growth n nϭ ⌽ curves could be best fitted with curves of the type: D -D0 K . The irradiations were done at temperatures ranging from 20 to 773 K. The results suggest the existence of three regimes with respect to irradiating temperature: ͑i͒ a purely thermal regime, which appears to start above the bulk coarse-grained recrystalli- zation temperature, ͑ii͒ a thermally assisted regime where thermal diffusion and irradiation effects combine to increase the rate of grain growth relative to that resulting from either of these mechanisms alone, and ͑iii͒ an athermal regime ͑low-temperature regime͒ where irradiation can by itself cause grain growth. The transition temperature between the athermal regime and the thermally assisted regime depends on the material, but is in the range 0.14–0.22 times the melting point.
    [Show full text]
  • MME 415 Physical Metallurgy
    MME 415 Physical Metallurgy Table of Contents: EXPERIMENT-1: RECOVERY AND RECRYSTALLIZATION.................................2 EXPERIMENT- 2: GRAIN GROWTH...........................................................................5 EXPERIMENT-3: NUCLEATION AND GROWTH .....................................................8 EXPERIMENT-4: CARBURIZING..............................................................................11 EXPERIMENT œ5: HARDENABILITY OF STEEL....................................................14 EXPERIMENT-6: EUTECTOID TRANSFORMATION IN 0.7 % STEEL. ...............18 EXPERIMENT-7: TEMPERING OF MARTENSITE..................................................21 EXPERIMENT 8 : ELECTRICAL RESISTIVITY OF ALLOY (Ge-SEMI CONDUCTOR)..............................................................................................................23 EXPERIMENT : ELECTRICAL CONDUCTIVITY OF IONIC SOLIDS (NaCl).......28 EXPERIMENT-10 DIELECTRIC BEHAVIOR OF BARIUM TITANATE, (BaTiO 3) ........................................................................................................................................32 REFERENCES:..............................................................................................................35 EXPERIMENT-1: RECOVERY AND RECRYSTALLIZATION OBJECTIVE: To study the recrystallization behavior of pure metal ( Iron ). THEORY: When metals are cold worked, most of the energy expended in the process appears as heat but a few percent is stored in the deformed metal structure. This stored energy acts as
    [Show full text]
  • Grain Growth and Hall-Petch Relationship in a Refractory Hfnbtazrti High-Entropy Alloy
    Journal of Alloys and Compounds 795 (2019) 19e26 Contents lists available at ScienceDirect Journal of Alloys and Compounds journal homepage: http://www.elsevier.com/locate/jalcom Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy ** Shuying Chen a, Ko-Kai Tseng b, Yang Tong a, Weidong Li a, , Che-Wei Tsai b, c, * Jien-Wei Yeh b, c, Peter K. Liaw a, a Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA b Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan c High Entropy Materials Center, National Tsing Hua University, Hsinchu, 30013, Taiwan article info abstract Article history: Understanding the effect of temperature variation on the microstructural evolution is particularly Received 14 January 2019 important to refractory high-entropy alloys (RHEAs), given their potential high-temperature applications. Received in revised form Here, we experimentally investigated the grain-growth behavior of the HfNbTaZrTi RHEAs during 24 April 2019 recrystallization at temperatures from 1,000 to 1,200 C for varied durations, following cold rolling with a Accepted 26 April 2019 70% thickness reduction. Following the classical grain-growth kinetics analysis, two activation energies Available online 7 May 2019 are obtained: 205 kJ/mol between 1,000 and 1,100 C, and 401 kJ/mol between 1,100 and 1,200 C, which suggests two mechanisms of grain growth. Moreover, the yield strength e grain size relation was found Keywords: s ¼ þ À0:5 Grain growth to be well described by the Hall-Petch relation in the form of y 942 270D .
    [Show full text]
  • Non-Isothermal Grain Growth in Metals and Alloys
    REVIEW Non-isothermal grain growth in metals and alloys S. Mishra and T. DebRoy* A large portion of the previous research on grain growth has been focused on isothermal conditions and excellent reviews on this topic are available in the literature. However, most of the materials processing operations such as casting, rolling and welding take place under non- isothermal conditions. Grain growth in materials under significant spatial and temporal variation of temperature exhibits many important special characteristics. The present paper critically examines these special features of grain growth in several important materials processing operations. Various experimental and theoretical approaches used to study grain growth in non- isothermal systems are examined and compared. The classical isothermal grain growth theories are reviewed, because they are sometimes applied to non-isothermal systems by incorporating thermal history in the calculations. Various numerical techniques and their applications to non- isothermal systems are also examined and compared. Finally, progress made in understanding non-isothermal grain growth in metals and alloys is summarised and several areas of future research are identified. This review is targeted towards an audience of materials scientists and engineers interested in various materials processing operations under non-isothermal conditions. Keywords: Grain growth, Welding, Casting, Rolling, Annealing, Monte Carlo, Cellular automaton, Phase field Introduction times at high and low temperatures on grain growth kinetics? The answer to this question is important for Grain growth in isothermal systems has been studied cyclic annealing and it also reflects on the current state extensively,1–44 and excellent reviews are available in 1–5 of understanding of grain growth.
    [Show full text]
  • Mechanical Behavior of Electrodeposited Bulk Nanocrystalline Fe-Ni Alloys
    Materials Research. 2015; 18(Suppl. 1): 95-100 © 2015 DOI: http://dx.doi.org/10.1590/1516-1439.329014 Mechanical Behavior of Electrodeposited Bulk Nanocrystalline Fe-Ni Alloys Isao Matsuia,b*, Hiroki Moria, Tomo Kawakatsua, Yorinobu Takigawaa, Tokuteru Uesugia, Kenji Higashia aDepartment of Materials Science, Osaka Prefecture University,1-1, Gakuen-cho, Sakai, Osaka, 599-8531, Japan bStructural Materials Research Institute, National Institute of Advanced Industrial Science and Technology – AIST, 2266-98, Shimo-Shidami, Moriyama-ku, Nagoya, 463-8560, Japan Received: September 13, 2014; Revised: September 16, 2015 Bulk nanocrystalline Fe-Ni alloys with Ni content of 40-55 at.%, grain size of 12-15 nm, and hardness of 3.9-4.6 were prepared by an electrodeposition. The decrease in the hardness values as grain size decreased was discussed in terms of grain refinement effect, solid solution strengthening, and grain boundary relaxation strengthening. It was found that the change of Ni content could not significant solid solution strengthening, and there were no difference in the state of grain boundary for each sample. Micro X-ray diffraction analysis on the sample after tensile tests showed that the (200) texture was developed but full width at half maximum was not changed. This indicated the potency that the grain boundary activity would be induced by a tensile loading. The softening behavior of electrodeposited Fe–Ni alloys would be related to the transition of the dominant deformation mechanisms. Keywords: nanocrystalline metals, electrodeposition, Fe-Ni alloys, mechanical properties, micro X-ray diffraction 1. Introduction Nanocrystalline metals with grain sizes less than 100 nm termed grain-boundary-relaxation strengthening.
    [Show full text]
  • Structure, Electrical Characteristics, and High-Temperature Stability of Aerosol Jet Printed Silver Nanoparticle Films Md Taibur Rahman,1 John Mccloy,1 C
    JOURNAL OF APPLIED PHYSICS 120, 075305 (2016) Structure, electrical characteristics, and high-temperature stability of aerosol jet printed silver nanoparticle films Md Taibur Rahman,1 John McCloy,1 C. V. Ramana,2,a) and Rahul Panat1,a) 1School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99163, USA 2Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968, USA (Received 8 May 2016; accepted 31 July 2016; published online 17 August 2016) Printed electronics has emerged as a versatile eco-friendly fabrication technique to create sintered nanoparticle (NP) films on arbitrary surfaces with an excellent control over the film microstructure. While applicability of such films for high-temperature applications is not explored previously, herein we report the high-temperature electrical stability of silver (Ag) metal NP films fabricated using an Aerosol Jet based printing technique and demonstrate that this behavior is dictated by changes in the film microstructure. In-situ high temperature (24–500 C) impedance spectroscopy measurements show that the real part of the impedance increases with increasing temperature up to 150 C, at which point a decreasing trend prevails until 300 C, followed again by an increase in impedance. The electrical behavior is correlated with the in-situ grain growth of the Ag NP films, as observed afterwards by scanning electron microscopy and X-ray diffraction (XRD), and could be tailored by controlling the initial microstructure through sintering conditions. Using combined diffraction and spectroscopic analytical methods, it is demonstrated the Aerosol Jet printed Ag NP films exhibit enhanced thermal stability and oxidation resistance.
    [Show full text]
  • DETERMINTAION of SINTERING MECHANISM and GRAIN GROWTH KINETICS of Mgo-DOPED Al2o3
    JTM DETERMINTAION OF SINTERING MECHANISM AND GRAIN GROWTH KINETICS OF MgO-DOPED Al2O3 oleh : Muhammad Akbar Rhamdhani *, Syoni Soepriyanto**, Aditianto Ramelan *, A. Barliansyah *** Sari MgO dalam bentuk larutan padat dapat tersegregasi di sepanjang batas butir keramik Al2O3. Ini akan menurunkan mobilitas batas butir dan juga menghambat pertumbuhan butir. Artikel ini membahas tentang penentuan mekanisme sintering dan kinetika pertumbuhan butir Al2O3 yang didoping oleh MgO yang disinter pada 1773K. Model penyusutan linear digunakan untuk menentukan mekanisme sintering. Besar butir rata-rata dari sampel ditentukan dari data difraksi sinar-x dengan menggunakan metode fluktuasi statistic. Hasil menunjukkan bahwa mekanisme sintering untuk sampel dengan 0.1wt% dan 0.3 wt% MgO didominasi oleh difusi permukaan, dan untuk sampel dengan 0.5 wt% dan 1.0 wt% MgO didominasi oleh difusi batas butir. Besar butir rata-rata untuk sampel Al2O3 yang disinter selama 2 jam adalah 21.1μm. Untuk waktu sintering yang sama, doping MgO sebanyak 0.1 wt% sampai 1.0 wt% menurunkan besar butir rata-rata menjadi masing-masing 12 sampai 10μm. Kata kunci : MgO-doped Al2O3, model penyusutan linear, metode fluktuasi statistik, sintering, pertumbuhan butir Abstract MgO in the form of a solid solution can segregate along the Al2O3 ceramic grain boundary. This will lower the grain boundary mobility and also inhibit the grain growth. This article describes the determination of the sintering mechanism and grain growth kinetics of MgO-doped Al2O3 sintered at 1773K. A linear shrinkage model was used for determining the sintering mechanism. Average grain size of ceramic samples was determined from their x-ray diffraction data, by implementing the statistical fluctuation method (SFM).
    [Show full text]
  • Mechanical Testing of Ultra-High Temperature Ceramics at 1500°C
    Air Force Institute of Technology AFIT Scholar Theses and Dissertations Student Graduate Works 3-26-2015 Mechanical Testing of Ultra-High Temperature Ceramics at 1500°C in Air -Development of an Experimental Facility and Test Method Sheena L. Winder Follow this and additional works at: https://scholar.afit.edu/etd Part of the Structures and Materials Commons Recommended Citation Winder, Sheena L., "Mechanical Testing of Ultra-High Temperature Ceramics at 1500°C in Air -Development of an Experimental Facility and Test Method" (2015). Theses and Dissertations. 188. https://scholar.afit.edu/etd/188 This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact [email protected]. MECHANICAL TESTING OF ULTRA-HIGH TEMPERATURE CERAMICS AT 1500°C IN AIR – DEVELOPMENT OF AN EXPERIMENTAL FACILITY AND TEST METHOD DISSERTATION Sheena L. Winder, Major, USAF AFIT-ENY-DS-15-M-259 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY Air Force Institute of Technology Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED The views expressed in this dissertation are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENY-DS-15-M-259 MECHANICAL TESTING OF ULTRA-HIGH TEMPERATURE CERAMICS AT 1500°C IN AIR – DEVELOPMENT OF AN EXPERIMENTAL FACILITY AND TEST METHOD DISSERTATION Presented to the Faculty Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Sheena L.
    [Show full text]
  • The Influence of Mg-Based Inclusions on the Grain Boundary Mobility Of
    metals Article The Influence of Mg-Based Inclusions on the Grain Boundary Mobility of Austenite in SS400 Steel Chih-Ting Lai 1, Hsuan-Hao Lai 1, Yen-Hao Frank Su 2 , Fei-Ya Huang 1, Chi-Kang Lin 1, Jui-Chao Kuo 1,* and Hwa-Teng Lee 3 1 Department of Materials Science and Engineering, National Cheng-Kung University, Tainan 701, Taiwan; [email protected] (C.-T.L.); [email protected] (H.-H.L.); [email protected] (F.-Y.H.); [email protected] (C.-K.L.) 2 China Steel Corporation, Kaohsiung 81233, Taiwan; [email protected] 3 Department of Mechanical Engineering, National Cheng-Kung University, Tainan 701, Taiwan; [email protected] * Correspondence: [email protected]; Tel.: +886-6-2754194 Received: 23 January 2019; Accepted: 20 March 2019; Published: 22 March 2019 Abstract: In this study, the effects of the addition of Mg to the grain growth of austenite and the magnesium-based inclusions to mobility were investigated in SS400 steel at high temperatures. A high-temperature confocal scanning laser microscope (HT-CSLM) was employed to directly observe, in situ, the grain structure of austenite under 25 torr Ar at high temperatures. The grain size distribution of austenite showed the log-normal distribution. The results of the grain growth curves using 3D surface fitting showed that the n and Q values of the growth equation parameters ranged from 0.2 to 0.26 and from 405 kJ/mole to 752 kJ/mole, respectively, when adding 5.6–22 ppm of Mg. Increasing the temperature from 1150 to 1250 ◦C for 20 min and increasing the addition of Mg by 5.6, 11, and 22 ppm resulted in increases in the grain boundary velocity.
    [Show full text]
  • Cold Work, Recovery, Recrystallization and Grain Growth
    Experiment 5 - Cold Work, Recovery, Recrystallization and Grain Growth Objective To study the effects of cold working on the microstructure and mechanical properties of 70/30 Cartridge Brass. Background A small percentage of the energy expended in plastically deforming a material remains stored in the metal as an increase in internal energy. Changes are produced in both its physical and mechanical properties. Principally, there is a marked increase in hardness and electrical resistivity with the amount of cold working. Microstructurally, this increment in internal energy is associated with an increase in the dislocation density as well as the density of point defects, such as vacancies and interstitials. For most metals, the dislocation density increases from the values of 106-107 lines/cm2 (typical of the annealed state) to 108-109 after a few percent deformation and up to 1011 -1012 lines/cm2 after heavy deformation. At a more macrostructural level, the grains become markedly elongated in the direction of working and heavily distorted. This distortion is evident from a bending of annealing twins and from unevenness in etching caused by local strain inhomogeneities. While the increased hardness and strength that result from the working operation can be important, it is often necessary to return the metal to its initial condition by annealing. This usually means holding the cold worked metal at a temperature above about 1/3 of the absolute melting point for a period of time. The annealing treatment is divided into three distinct regions: 1. Recovery: This usually occurs at low temperatures and involves motion and annihilation of point defects as well as annihilation and rearrangement of dislocations resulting in the formation of subgrains and subgrain boundaries (e.g., tilt and/or twist low-angle boundaries).
    [Show full text]