Grain Growth and Hall-Petch Relationship in a Refractory Hfnbtazrti High-Entropy Alloy
Journal of Alloys and Compounds 795 (2019) 19e26 Contents lists available at ScienceDirect Journal of Alloys and Compounds journal homepage: http://www.elsevier.com/locate/jalcom Grain growth and Hall-Petch relationship in a refractory HfNbTaZrTi high-entropy alloy ** Shuying Chen a, Ko-Kai Tseng b, Yang Tong a, Weidong Li a, , Che-Wei Tsai b, c, * Jien-Wei Yeh b, c, Peter K. Liaw a, a Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA b Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan c High Entropy Materials Center, National Tsing Hua University, Hsinchu, 30013, Taiwan article info abstract Article history: Understanding the effect of temperature variation on the microstructural evolution is particularly Received 14 January 2019 important to refractory high-entropy alloys (RHEAs), given their potential high-temperature applications. Received in revised form Here, we experimentally investigated the grain-growth behavior of the HfNbTaZrTi RHEAs during 24 April 2019 recrystallization at temperatures from 1,000 to 1,200 C for varied durations, following cold rolling with a Accepted 26 April 2019 70% thickness reduction. Following the classical grain-growth kinetics analysis, two activation energies Available online 7 May 2019 are obtained: 205 kJ/mol between 1,000 and 1,100 C, and 401 kJ/mol between 1,100 and 1,200 C, which suggests two mechanisms of grain growth. Moreover, the yield strength e grain size relation was found Keywords: s ¼ þ À0:5 Grain growth to be well described by the Hall-Petch relation in the form of y 942 270D .
[Show full text]