Effect of Cold-Deformation on Austenite Grain Growth Behavior in Solution-Treated Low Alloy Steel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Grain Boundary Irregularity to Quantify Dynamic Recrystallization in Ice
Acta Materialia 209 (2021) 116810 Contents lists available at ScienceDirect Acta Materialia journal homepage: www.elsevier.com/locate/actamat Using grain boundary irregularity to quantify dynamic recrystallization in ice ∗ Sheng Fan a, , David J. Prior a, Andrew J. Cross b,c, David L. Goldsby b, Travis F. Hager b, Marianne Negrini a, Chao Qi d a Department of Geology, University of Otago, Dunedin, New Zealand b Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA, United States c Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, United States d Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China a r t i c l e i n f o a b s t r a c t Article history: Dynamic recrystallization is an important mechanical weakening mechanism during the deformation of Received 24 December 2020 ice, yet we currently lack robust quantitative tools for identifying recrystallized grains in the “migration” Revised 7 March 2021 recrystallization regime that dominates ice deformation at temperatures close to the ice melting point. Accepted 10 March 2021 Here, we propose grain boundary irregularity as a quantitative means for discriminating between recrys- Available online 15 March 2021 tallized (high sphericity, low irregularity) and remnant (low sphericity, high irregularity) grains. To this Keywords: end, we analysed cryogenic electron backscatter diffraction (cryo-EBSD) data of deformed polycrystalline High-temperature deformation ice, to quantify dynamic recrystallization using grain boundary irregularity statistics. Grain boundary ir- Grain boundary irregularity regularity has an inverse relationship with a sphericity parameter, , defined as the ratio of grain area Dynamic recrystallization and grain perimeter, divided by grain radius in 2-D so that the measurement is grain size independent. -
Grain Growth During Spark Plasma and Flash Sintering of Ceramic Nanoparticles: a Review Rachman Chaim, Geoffroy Chevallier, Alicia Weibel, Claude Estournes
Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review Rachman Chaim, Geoffroy Chevallier, Alicia Weibel, Claude Estournes To cite this version: Rachman Chaim, Geoffroy Chevallier, Alicia Weibel, Claude Estournes. Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. Journal of Materials Science, Springer Verlag, 2018, vol. 53 (n° 5), pp. 3087-3105. 10.1007/s10853-017-1761-7. hal-01682331 HAL Id: hal-01682331 https://hal.archives-ouvertes.fr/hal-01682331 Submitted on 12 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive TOULOUSE Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 19431 To link to this article : DOI:10.1007/s10853-017-1761-7 URL : http://dx.doi.org/10.1007/s10853-017-1761-7 To cite this version : Chaim, Rachman and Chevallier, Geoffroy and Weibel, Alicia and Estournes, Claude Grain growth during spark plasma and flash sintering of ceramic nanoparticles: a review. -
Ceramics Overview: Classification by Microstructure and Processing Methods
Clinical Ceramics overview: classification by microstructure and processing methods Edward A. McLaren 1 and Russell Giordano 2 Abstract The plethora of ceramic systems available today for all types of indirect restorations can be confusing and overwhelming for the clinician. Having a better understanding of them is important. In this article, the authors use classification systems based on microstructural components of ceramics and the processing techniques to help illustrate the various properties. Introduction component atoms, and may exhibit ionic or covalent Many different types of ceramic systems have been bonding. Although ceramics can be very strong, they are also introduced in recent years for all types of indirect extremely brittle and will catastrophically fail after minor restorations, from very conservative nonpreparation veneers, flexure. Thus, these materials are strong in compression but to multi-unit posterior fixed partial dentures and everything weak in tension. in between. Understanding all the different nuances of Contrast that with metals: metals are non-brittle (display materials and material processing systems is overwhelming elastic behaviour) and ductile (display plastic behaviour). This and can be confusing. This article will cover what types of is because of the nature of the interatomic bonding, which is ceramics are available based on a classification of the called metallic bonds; a cloud of shared electrons that can microstructural components of the ceramic. A second, easily move when energy is applied defines these bonds. This simpler classification system based on how the ceramics are is what makes most metals excellent conductors. Ceramics can processed will give the main guidelines for their use. be very translucent to very opaque. -
Texture and Microstructure
Texture and Microstructure • Microstructure contains far more than qualitative descriptions (images) of cross-sections of materials. • Most properties are anisotropic •it is important to quantitatively characterize the microstructure including orientation information (texture). In latin, textor means weaver In materials science, texture way in which a material is woven. Polycrystalline material is constituted from a large number of small crystallites (limited volume of material in which periodicity of crystal lattice is present). Each of these crystallites has a specific orientation of the crystal lattice. A randomly texture sheet A strongly textured sheet The cube texture (001) ND (Sheet Normal Direction) [100] RD (Sheet Rolling Direction) Crystallographic texture is the orientation distribution of crystallites in a polycrystalline material Texture :Metallurgists and Materials Scientists Fabric :Geologists and Mineralogists Preferred Orientation :Everybody Why textures? Texture influences the following properties: •Elastic modulus •Yield strength •Tensile ductility and strength •Formability •Fatigue strength •Fracture toughness •Stress corrosion cracking •Electrical and Magnetic properties Major fields of application A. Conventional • Aluminium industry • Steel industry • LC steels • Electrical steels • Titanium alloys • Zirconium base nuclear grade alloys B. Modern • High Tc superconductors • Thin films for semiconducting and magnetic devices • Bulk magnetic materials • Structural Ceramics • Polymers Beverage Cans Aluminium beverage -
Introduction to Material Science and Engineering Presentation.(Pdf)
Introduction to Material Science and Engineering Introduction What is material science? Definition 1: A branch of science that focuses on materials; interdisciplinary field composed of physics and chemistry. Definition 2: Relationship of material properties to its composition and structure. What is a material scientist? A person who uses his/her combined knowledge of physics, chemistry and metallurgy to exploit property-structure combinations for practical use. What are materials? What do we mean when we say “materials”? 1. Metals 2. Ceramics 3. Polymers 4. Composites - aluminum - clay - polyvinyl chloride (PVC) - wood - copper - silica glass - Teflon - carbon fiber resins - steel (iron alloy) - alumina - various plastics - concrete - nickel - quartz - glue (adhesives) - titanium - Kevlar semiconductors (computer chips, etc.) = ceramics, composites nanomaterials = ceramics, metals, polymers, composites Length Scales of Material Science • Atomic – < 10-10 m • Nano – 10-9 m • Micro – 10-6 m • Macro – > 10-3 m Atomic Structure – 10-10 m • Pertains to atom electron structure and atomic arrangement • Atom length scale – Includes electron structure – atomic bonding • ionic • covalent • metallic • London dispersion forces (Van der Waals) – Atomic ordering – long range (metals), short range (glass) • 7 lattices – cubic, hexagonal among most prevalent for engineering metals and ceramics • Different packed structures include: Gives total of 14 different crystalline arrangements (Bravais Lattices). – Primitive, body-centered, face-centered Nano Structure – 10-9 m • Length scale that pertains to clusters of atoms that make up small particles or material features • Show interesting properties because increase surface area to volume ratio – More atoms on surface compared to bulk atoms – Optical, magnetic, mechanical and electrical properties change Microstructure – 10-6 • Larger features composed of either nanostructured materials or periodic arrangements of atoms known as crystals • Features are visible with high magnification in light microscope. -
Correlation Between Crystal Structure, Surface/Interface Microstructure, and Electrical Properties of Nanocrystalline Niobium Thin Films
nanomaterials Article Correlation between Crystal Structure, Surface/Interface Microstructure, and Electrical Properties of Nanocrystalline Niobium Thin Films L. R. Nivedita 1, Avery Haubert 2, Anil K. Battu 1,3 and C. V. Ramana 1,3,* 1 Center for Advanced Materials Research, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; [email protected] (L.R.N.); [email protected] (A.K.B.) 2 Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106, USA; [email protected] 3 Department of Mechanical Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA * Correspondence: [email protected]; Tel.: +1-915-747-8690 Received: 10 May 2020; Accepted: 26 June 2020; Published: 30 June 2020 Abstract: Niobium (Nb) thin films, which are potentially useful for integration into electronics and optoelectronics, were made by radio-frequency magnetron sputtering by varying the substrate temperature. The deposition temperature (Ts) effect was systematically studied using a wide range, 25–700 ◦C, using Si(100) substrates for Nb deposition. The direct correlation between deposition temperature (Ts) and electrical properties, surface/interface microstructure, crystal structure, and morphology of Nb films is reported. The Nb films deposited at higher temperature exhibit a higher degree of crystallinity and electrical conductivity. The Nb films’ crystallite size varied from 5 to 9 ( 1) nm and tensile strain occurs in Nb films as Ts increases. The surface/interface morphology of ± the deposited Nb films indicate the grain growth and dense, vertical columnar structure at elevated Ts. The surface roughness derived from measurements taken using atomic force microscopy reveal that all the Nb films are characteristically smooth with an average roughness <2 nm. -
Rotary Friction Welding of Inconel 718 to Inconel 600
metals Article Rotary Friction Welding of Inconel 718 to Inconel 600 Ateekh Ur Rehman * , Yusuf Usmani, Ali M. Al-Samhan and Saqib Anwar Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (Y.U.); [email protected] (A.M.A.-S.); [email protected] (S.A.) * Correspondence: [email protected]; Tel.: +966-1-1469-7177 Abstract: Nickel-based superalloys exhibit excellent high temperature strength, high temperature corrosion and oxidation resistance and creep resistance. They are widely used in high temperature applications in aerospace, power and petrochemical industries. The need for economical and efficient usage of materials often necessitates the joining of dissimilar metals. In this study, dissimilar welding between two different nickel-based superalloys, Inconel 718 and Inconel 600, was attempted using rotary friction welding. Sound metallurgical joints were produced without any unwanted Laves or delta phases at the weld region, which invariably appear in fusion welds. The weld thermal cycle was found to result in significant grain coarsening in the heat effected zone (HAZ) on either side of the dissimilar weld interface due to the prevailing thermal cycles during the welding. However, fine equiaxed grains were observed at the weld interface due to dynamic recrystallization caused by severe plastic deformation at high temperatures. In room temperature tensile tests, the joints were found to fail in the HAZ of Inconel 718 exhibiting good ultimate tensile strength (759 MPa) without a significant loss of tensile ductility (21%). A scanning electron microscopic examination of the fracture surfaces revealed fine dimpled rupture features, suggesting a fracture in a ductile mode. -
Introduction to Microstructure
Materials and Minerals Science Practical 17 CP1 Course C: Microstructure Introduction to microstructure 1.1 What is microstructure? When describing the structure of a material, we make a clear distinction between its crystal structure and its microstructure. The term ‘crystal structure’ is used to describe the average positions of atoms within the unit cell, and is completely specified by the lattice type and the fractional coordinates of the atoms (as determined, for example, by X-ray diffraction). In other words, the crystal structure describes the appearance of the material on an atomic (or Å) length scale. The term ‘microstructure’ is used to describe the appearance of the material on the nm-cm length scale. A reasonable working definition of microstructure is: “The arrangement of phases and defects within a material.” Microstructure can be observed using a range of microscopy techniques. The microstructural features of a given material may vary greatly when observed at different length scales. For this reason, it is crucial to consider the length scale of the observations you are making when describing the microstructure of a material. In this course you will learn about how and why microstructures form, and how microstructures are observed experimentally. Most importantly, microstructures affect the physical properties and behaviour of a material, and we can tailor the microstructure of a material to give it specific properties (this is the subject of the next course). The microstructures of natural minerals provide information about their complex geological history. Microstructure is a fundamental part of all materials and minerals science, and these themes will be expanded on in subsequent courses. -
Grain Growth in Nanocrystalline Metal Thin Films Under in Situ Ion-Beam Irradiation
Journal of ASTM International, Vol. 4, No. 8 Paper ID JAI100743 Available online at www.astm.org D. Kaoumi,1 A. T. Motta,1 and R. C. Birtcher2 Grain Growth in Nanocrystalline Metal Thin Films under In Situ Ion-Beam Irradiation ABSTRACT: In-situ observations in a transmission electron microscope ͑TEM͒ were used to study the microstructure evolution in metal Zr, Pt, Cu, and Au nanocrystalline thin films under ion-beam irradiation. Free-standing films were prepared by sputter deposition. Samples were irradiated in-situ at the Intermedi- ate Voltage Electron Microscope ͑IVEM͒ at Argonne National Laboratory with Ar and Kr ions to fluences in excess of 1016 ion/cm2. As a result of irradiation, grain growth was observed in all samples using Bright Field ͑BF͒ imaging in the TEM. The average grain size increased monotonically with ion fluence until it reached a saturation value. Similarly to thermal grain growth, the ion-irradiation induced grain growth n nϭ ⌽ curves could be best fitted with curves of the type: D -D0 K . The irradiations were done at temperatures ranging from 20 to 773 K. The results suggest the existence of three regimes with respect to irradiating temperature: ͑i͒ a purely thermal regime, which appears to start above the bulk coarse-grained recrystalli- zation temperature, ͑ii͒ a thermally assisted regime where thermal diffusion and irradiation effects combine to increase the rate of grain growth relative to that resulting from either of these mechanisms alone, and ͑iii͒ an athermal regime ͑low-temperature regime͒ where irradiation can by itself cause grain growth. The transition temperature between the athermal regime and the thermally assisted regime depends on the material, but is in the range 0.14–0.22 times the melting point. -
Understanding Materials Microstructure and Behavior at the Mesoscale A.D
Understanding materials microstructure and behavior at the mesoscale A.D. Rollett , G.S. Rohrer , and R.M. Suter Taking the mesoscale to mean length and time scales at which a material’s behavior is too complex to be understood by construction from the atomistic scale, we focus on three- dimensional characterization and modeling of mesoscale responses of polycrystals to thermal and mechanical loading. Both elastic and plastic internal structural responses are now accessible via high-energy x-ray probes. The combination of diffraction experiments and computed tomography, for example, is yielding new insights into how void formation correlates with microstructural features such as grain boundaries and higher-order junctions. The resulting large, combined data sets allow for validation of micromechanical and thermal simulations. As detectors improve in resolution, quantum effi ciency, and speed of readout, data rates and data volumes present computational challenges. Spatial resolutions approach one micrometer, while data sets span a cubic millimeter. Examples are given of applications to tensile deformation of copper, grain growth in nickel and titanium, and fatigue cracks in superalloys. Introduction Dislocations, in particular, are well understood as individual The mesoscale is a crucial realm in materials science, espe- defects where an example of a well-established method is cially for polycrystalline materials. Put as succinctly as pos- the calculation of the Peierls stress required to move them sible, a mesoscale property is an attribute of a material that through a lattice. 2 Plastic deformation presents challenges cannot be straightforwardly constructed from properties at the because it generates large dislocation densities on multiple slip atomic scale. -
MME 415 Physical Metallurgy
MME 415 Physical Metallurgy Table of Contents: EXPERIMENT-1: RECOVERY AND RECRYSTALLIZATION.................................2 EXPERIMENT- 2: GRAIN GROWTH...........................................................................5 EXPERIMENT-3: NUCLEATION AND GROWTH .....................................................8 EXPERIMENT-4: CARBURIZING..............................................................................11 EXPERIMENT œ5: HARDENABILITY OF STEEL....................................................14 EXPERIMENT-6: EUTECTOID TRANSFORMATION IN 0.7 % STEEL. ...............18 EXPERIMENT-7: TEMPERING OF MARTENSITE..................................................21 EXPERIMENT 8 : ELECTRICAL RESISTIVITY OF ALLOY (Ge-SEMI CONDUCTOR)..............................................................................................................23 EXPERIMENT : ELECTRICAL CONDUCTIVITY OF IONIC SOLIDS (NaCl).......28 EXPERIMENT-10 DIELECTRIC BEHAVIOR OF BARIUM TITANATE, (BaTiO 3) ........................................................................................................................................32 REFERENCES:..............................................................................................................35 EXPERIMENT-1: RECOVERY AND RECRYSTALLIZATION OBJECTIVE: To study the recrystallization behavior of pure metal ( Iron ). THEORY: When metals are cold worked, most of the energy expended in the process appears as heat but a few percent is stored in the deformed metal structure. This stored energy acts as -
Forensic Materials Scientist Or “Whodunit” Detective
S-E-A SEAlimited.com FALL 2019 FORENSIC MATERIALS SCIENTIST OR “WHODUNIT” DETECTIVE Being a forensic materials scientist is being a “whodunit” detective, tasked with determining why a product or process allegedly failed and who is responsible. Robert S. Carbonara, Ph.D. Forensic materials science is a broad devices (bolts, etc.), hoses and piping, Why the “so what” question matters technical discipline, that analyzes physical amusement rides, firearms, glassware, To illustrate the importance and practical evidence using the principles of physics and bicycles, CPVC piping, sprinkler systems, application of answering the “so what,” chemistry. Before the advent of modern storage tanks, and numerous others several complex case profiles are presented. engineering materials, most forensic • Material Production and Manufacturing These cases involved: (1) a serious injury materials scientists worked with metals and Processes — Recycling precious metal, where there was responsibility avoidance by were called metallurgists. Today, forensic aluminum and steel furnace operations, the parties involved, (2) a very complex metal materials scientists work with an metal casting operations, metal forging assortment of materials, including plastics, recovery process with a seven-figure loss and rolling production, pipe claim, (3) medical devices that fail and are ceramics, glass, composites, even wood and manufacturing leather and, of course, metals. Despite the complicated by issues of patient or doctor • Construction — Beams and support conduct, and (4) a pipeline failure that oc- broadening of the materials spectrum, the structures, welds, safety device material, same scientific principles that apply to metals curred many years after installation and with lifting cables, chains and straps, hoisting multiple possible technical failure scenarios.