Polyhydrides of Platinum Group Metals: Nonclassical Interactions and Σ‑Bond Activation Reactions Miguel A

Total Page:16

File Type:pdf, Size:1020Kb

Polyhydrides of Platinum Group Metals: Nonclassical Interactions and Σ‑Bond Activation Reactions Miguel A This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Review pubs.acs.org/CR Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ‑Bond Activation Reactions Miguel A. Esteruelas,* Ana M. Lopez,́ and Montserrat Olivań Departamento de Química Inorganica,́ Instituto de Síntesis Química y Catalisiś Homogeneá (ISQCH), Centro de Innovacioneń Química Avanzada (ORFEO−CINQA), Universidad de Zaragoza−CSIC, 50009 Zaragoza, Spain ABSTRACT: The preparation, structure, dynamic behavior in solution, and reactivity of polyhydride complexes of platinum group metals, described during the last three decades, are contextualized from both organometallic and coordination chemistry points of view. These compounds, which contain dihydrogen, elongated dihydrogen, compressed dihydride, and classical dihydride ligands promote the activation of B−H, C−H, Si−H, N−H, O−H, C−C, C−N, and C−F, among other σ-bonds. In this review, it is shown that, unlike other more mature areas, the chemistry of polyhydrides offers new exciting conceptual challenges and at the same time the possibility of interacting with other fields including the conversion and storage of regenerative energy, organic synthetic chemistry, drug design, and material science. This wide range of possible interactions foresees promising advances in the near future. CONTENTS 3.6.5. Si−H, Ge−H, and Sn−H Bond Activa- tions 8807 1. Introduction 8770 3.6.6. N−H and O−H Bond Activations 8810 2. Ruthenium 8772 3.6.7. Other σ-Bond Activations 8814 2.1. Phosphine Complexes 8772 4. Rhodium 8816 2.2. Complexes with Tetrapodal and Tripodal 5. Iridium 8817 Phosphine Ligands 8775 5.1. Phosphine Complexes 8817 2.3. Half Sandwich Compounds 8776 5.2. Complexes with Tripodal Phosphine Ligands 8821 2.4. Complexes with Tris(pyrazoyl)borate and 5.3. Half Sandwich Compounds 8821 Related Ligands 8777 5.4. Complexes with Tris(pyrazolyl)borate and 2.5. Complexes with Pincer Ligands 8778 Related Ligands 8822 2.6. Ruthenium-Polyhydride Complexes In- 5.5. Complexes with Pincer Ligands 8823 volved in σ-Bond Activation Reactions 8780 − 5.6. Iridium-Polyhydride Complexes Involved in 2.6.1. B H Bond Activation Reactions and σ-Bond Activation Reactions 8825 Related Processes 8780 5.6.1. B−H Bond Activation 8825 2.6.2. C−H Bond Activation 8782 − − 5.6.2. C H Bond Activation 8826 2.6.3. Si H Bond Activation 8784 5.6.3. Si−H Bond Activation 8828 2.6.4. N−H and O−H Bond Activations 8785 − σ 5.6.4. O H Bond Activation 8829 2.6.5. Other -Bond Activations 8786 6. Group 10 8829 3. Osmium 8787 7. Conclusion and Outlook 8830 3.1. Phosphine Complexes 8787 Author Information 8831 3.2. Complexes with Tetrapodal Phosphine Li- Corresponding Author 8831 gands 8792 Notes 8831 3.3. Half Sandwich Compounds 8792 Biographies 8831 3.4. Complexes with Tris(pyrazoyl)borate and Acknowledgments 8832 Related Ligands 8793 Dedication 8832 3.5. Complexes with Pincer Ligands 8794 References 8832 3.6. Osmium-Polyhydride Complexes Involved in σ-Bond Activation Reactions 8796 3.6.1. B−H Bond Activation Reactions 8796 3.6.2. Direct C−H Bond Activation 8798 3.6.3. Chelate-Assisted C−H Bond Activation 8800 − 3.6.4. C H Bond Activation of Imidazolium Special Issue: Metal Hydrides and Benzimidazolium Salts: Formation of NHC Complexes 8805 Received: February 4, 2016 Published: June 6, 2016 © 2016 American Chemical Society 8770 DOI: 10.1021/acs.chemrev.6b00080 Chem. Rev. 2016, 116, 8770−8847 Chemical Reviews Review 1. INTRODUCTION polyhydride skeleton and prevent position exchanges of these groups. In addition to the thermally activated site exchanges, Hydride is the ligand with the smallest number of valence some polyhydrides undergo quantum exchange coupling,21 electrons. It can only make single bonds to transition metal which manifests in the high field region of the 1H NMR spectra centers, which are among the strongest metal−ligand bonds.1 through large values of the observed H−H coupling constants Despite the strength of the M−H bonds, this ligand shows a (J ), which increase as the temperature increases. The great mobility and hydride site exchange is often observed.2 On obs phenomenon involves the exchange of the hydrogen nuclei. It the other hand, hydride has almost no steric influence. With its occurs by tunneling through a barrier between the two sides of uniquely small steric requirement, this ligand is ideal for the double-well potential,22 which is even lower than those achieving high coordination numbers. calculated for the hydrogen movements. For each temperature A major milestone for the understanding of the chemistry of − and a given hydrogen hydrogen separation (a), Jobs is transition metal hydride complexes was the discovery that the determined by eq 1, according to a two-dimensional harmonic hydrogen molecule can coordinate to a transition metal 23 3−6 oscillator model. Constant Jmag is the portion of Jobs due to the retaining almost intact the H−H bond. In contrast to the λ − − Fermi contact interaction, parameter is the hard sphere radius M H bond, the metal dihydrogen interaction is weak. Metal- of the hydrides, and ν describes the H−M−H vibrational wag dihydrogen and metal-dihydride forms are both parts of the mode that allows the movement along the H−H vector. They same redox equilibrium. Reducing metal centers favor the are characteristic for each compound and considered temper- oxidized dihydride form. However, oxidizing metal centers ature invariant. stabilize the reduced dihydrogen. The coordination enhances the acidity of the hydrogen molecule,7,8 which can undergo ⎡⎛ ⎞ ⎢ νa heterolytic cleavage9 and position exchange, through proton JJ=+2 ⎜ ⎟ obs mag ⎣⎢⎝ πλcoth[hkT ν /2 ]⎠ transfer, when a hydride coligand is also present in the complex. ⎧ ⎫⎤ In addition, the hydrogen atoms rapidly rotate around the −+2(πν222ma λ ) metal−dihydrogen axis. exp⎨ ⎬⎥ ⎩ ⎭⎦⎥ Other factors that have significantly contributed to the hhkTcoth[ν /2 ] (1) development of the field are the improvement of the quality of Saturated polyhydrides have the ability of losing molecular the characterization techniques, including X-ray and neutron − hydrogen to afford unsaturated species, which coordinate and diffractions,10 and NMR spectroscopy,11 13 and the availability subsequently activate σ-bonds, including B−H, C−H, Si−H, of more sophisticated programs and more potent computers for − − 14−18 N H, and O H bonds, among others. In this respect, DFT calculations, which are making possible the study of platinum group metals occupy a prominent place between − real molecules. Thus, today, it is possible to have a quite exact the metal elements.24 29 The activation of B−H bonds30,31 is a knowledge of the coordination polyhedra of the majority of the reaction of great interest concerning the borylation of organic − hydride complexes and the separation between the hydrogen molecules32 36 and the dehydrocoupling of ammonia-bor- − atoms bound to the metal center, in the solid state and in ane.37 39 The C−H bond activation is a classical issue in solution, and their mobility in solution. organometallics because of its connection with the functional- What do we understand by polyhydride complexes? We 40−47 fi ization of nonactivated organic substrates. The metal- de ne polyhydride complexes as compounds having enough mediated rupture of Si−H bonds is notable due to the hydrogen atoms bound to the metal center of a LnM fragment relevance of the M−SiR species in the hydrosilylation of to form at least two different types of ligands. These ligands can 3 fi unsaturated organic substrates, the direct synthesis of be classi ed in four types depending upon the separation chlorosilanes, and SiH/OH coupling.48 The N−Hbond between the coordinated hydrogens: (i) classical hydrides (>1.6 activation promoted by platinum group metals is a key step − Å), (ii) dihydrogen (0.8 1.0 Å), (iii) elongated dihydrogen in reactions of hydroamination of unsaturated organic − − (1.0 1.3 Å), and (iv) compressed dihydrides (1.3 1.6 Å). The molecules49 and for the use of ammonia in homogeneous distinction between elongated dihydrogen and compressed catalysis.50 The cleavage of O−H bonds is of potential dihydrides is formal, since for these species, the energy cost to relevance to metal-mediated solar-energy conversion routes.51 move the two hydrogens atoms between 1.00 and 1.60 Å is It is expected that water splitting driven by sunlight will −1 lower than 4 kcal mol (i.e., the energy of the complex is constitute a growing area of particular interest in the near practically independent of the separation between the hydrogen future.52 19 atoms). The main difference between them is the activation The coordination of a σ-E−E′ bond to a transition metal barrier for the combined rotation of both hydrogen atoms involves σ-donation from the σ-orbital of the coordinated bond − −1 around the M H2 axis, less than 8 kcal mol for the elongated − to empty orbitals of the metal and back bonding from the metal dihydrogen, and between 8 and 12 kcal mol 1 for the to the σ*(EE′) orbital. The activation toward homolysis or 20 compressed dihydrides. Nonclassical interactions are called heterolysis of the coordinated bond depends on the electronic those that occur around the metal coordination sphere, nature of the metal center. Nucleophilic metal centers enhance between hydrogen atoms separated by less than 1.6 Å. the back-donation, resulting in the homolytic addition of E−E′ A noticeable feature of polyhydride complexes is the to the metal. On the other hand, electrophilic metal centers combined movements of the hydrogen atoms bound to the increase the σ-donation to the metal, promoting the heterolytic metal center, in agreement with the mobility of hydride and cleavage of the E−E′ bond.
Recommended publications
  • Process Synthesis
    PROCESS SYNTHESIS DALE F. RUDD University of Wisconsin Madison, Wisconsin 53706 INTRODUCTION In the words of Webster, synthesis is "the proper way to approach process development. In combining of often diverse conceptions into a co­ these theories of process development, each syn­ herent whole" and analysis is "an examination thesis step defines an analysis problem the solu­ of a complex, its elements and their relations." tion of which provides data required for further Synthesis refers to the more inventive aspects of synthesis steps. Further, it became apparent that engineering and analysis to the more scientific. this organization of alternating synthesis and Both are required in the development of industrial analysis steps begs the development of educational processes. material for the early stages of engineering edu­ Since World War II engineering education has cation. moved strongly towards analysis, with the intro­ In this report we examine the development of duction of courses which analyse individual pro­ a first course in engineering in which synthesis cess operations and phenome,na. rransport phe­ and analysis are taught simultaneously. Elemen­ nomena, unit operations, process control, thermo­ tary new principles of process synthesis are com­ dynamics and other engineering science courses bined with the classic analysis techniques of greatly strengthened engineering education by material and energy balancing. Emphasis is on showing how things are and how they work. the development of process technology rather than Unfortunately, there was not a parallel de­ on the analysis of existing processes. velopment in the teaching of synthesis. The teach­ ing of how things ought to be rather than how RESEARCH IN PROCESS SYNTHESIS they are.
    [Show full text]
  • 05 M211rsj121020 24
    Quantum mechanics Mark Herbert, PhD World Development Institute, 39 Main Street, Flushing, Queens, New York 11354, USA, [email protected] Abstract: Quantum mechanics is a fundamental theory in physics that describes the physical properties of nature at small scales, of the order of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Most contents are from Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Quantum_mechanics). [Mark Herbert, PhD. Quantum mechanics. Researcher 2020;12(10):24-37]. ISSN 1553-9865 (print); ISSN 2163- 8950 (online). http://www.sciencepub.net/researcher. 5. doi:10.7537/marsrsj121020.05. Keywords: Quantum mechanics; theory; physics; nature; atom; field theory; quantum technology; science Introduction problem, and the correspondence between energy and Most contents are from Wikipedia, the free frequency in Albert Einstein's 1905 paper which encyclopedia explained the photoelectric effect. Early quantum (https://en.wikipedia.org/wiki/Quantum_mechanics). theory was profoundly re-conceived in the mid-1920s Quantum mechanics cannot predict the exact by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, location of a particle in space, only the probability of Max Born and others. The original interpretation of finding it at different locations.[1] The brighter areas quantum mechanics is the Copenhagen interpretation, represent a higher probability of finding the electron. developed by Niels Bohr and Werner Heisenberg in Quantum mechanics is a fundamental theory in Copenhagen during the 1920s. The modern theory is physics that describes the physical properties of nature formulated in various specially developed at small scales, of the order of atoms and subatomic mathematical formalisms.
    [Show full text]
  • Chemistry Grade Span 9/10
    Chemistry Grade Span 9/10 Carbon and Carbon Compounds Subject Matter and Methodological Competencies • name the allotropes of carbon and use them to explain the relationship between its structure and properties • state the characteristics of the oxides of carbon • conduct experiments to o detect evidence of carbon dioxide o detect evidence of carbonates (using carbon dioxide detection) o describe the natural formation and decay processes of carbonates and hydrogen carbonates and use this to explain a simple model of the carbon cycle Natural Gas and Crude Oil Subject Matter and Methodological Competencies • identify natural gas, crude oil and coal as fossil fuels • explain the causes and consequences of increasing carbon dioxide concentrations in the atmosphere • discuss the economic and ecological consequences of the production and transport of natural gas and crude oil • apply knowledge of substance mixtures and substance separation using the example of fractional distillation of petroleum • describe the molecular structure of the gaseous alkanes using chemical formulas, structural formulas and simplified structural formulas • conduct experiments to o examine the flammability and solubility of selected alkanes o determine that water and carbon dioxide are the products of combustion o explain the relationship between the construction, properties and uses of important alkanes (e.g. methane - natural gas, propane and butane - liquid gas, octane - gasoline, decane - diesel, octadecane - paraffin candle wax) o explain the cohesion of alkane
    [Show full text]
  • Supercritical Pyrolysis of N-Decane Sean Bagley Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2010 Supercritical Pyrolysis of n-Decane Sean Bagley Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemical Engineering Commons Recommended Citation Bagley, Sean, "Supercritical Pyrolysis of n-Decane" (2010). LSU Doctoral Dissertations. 4000. https://digitalcommons.lsu.edu/gradschool_dissertations/4000 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SUPERCRITICAL PYROLYSIS OF N-DECANE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemical Engineering by Sean Bagley B.S., Louisiana State University, 2003 December 2010 Acknowledgements I gratefully acknowledge the Air Force Office of Scientific Research, for providing the necessary funding for this research. I would like to thank Dr. Arthur Lafleur and Ms. Elaine Plummer of the Massachusetts Institute of Technology and Dr. John Fetzer of Chevron Research for providing reference standards and/or UV spectra of polycyclic aromatic hydrocarbons to my professor. I would like to thank my professor, Dr. Judy Wornat, for her wisdom and patience. The members of my group, Elmer Ledesma, Jorge Oña, Shiju Thomas, Michelle Walker, Jerome Robles, Franz Ehrenhauser, and Nimesh Poddar, each of whom contributed to my project in innumerable ways.
    [Show full text]
  • A Global Enhanced Vibrational Kinetic Model for Radio-Frequency Hydrogen Discharges and Application to the Simulation of a High
    A Global Enhanced Vibrational Kinetic Model for Radio-Frequency Hydrogen Discharges and Application to the Simulation of a High Current Negative Hydrogen Ion Source by Sergey Nikolaevich Averkin A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Aerospace Engineering by _____________________________ February 27, 2015 APPROVED: ______________________________________________________________________________ Dr. Nikolaos A. Gatsonis, Advisor Professor, Aerospace Engineering Program, Mechanical Engineering Department ______________________________________________________________________________ Dr. John J. Blandino, Committee Member Associate Professor, Aerospace Engineering Program, Mechanical Engineering Department ______________________________________________________________________________ Dr. Lynn Olson, Committee Member Senior Scientist, Busek Co. Inc., Natick, MA ______________________________________________________________________________ Dr. Seong-kyun Im, Graduate Committee Representative Assistant Professor, Aerospace Engineering Program, Mechanical Engineering Department 2 Abstract A Global Enhanced Vibrational Kinetic (GEVKM) model is presented for a new High Cur- rent Negative Hydrogen Ion Source (HCNHIS) developed by Busek Co. Inc. and Worcester Pol- ytechnic Institute. The HCNHIS consists of a high-pressure radio-frequency discharge (RFD) chamber in which the main production of high-lying vibrational states of
    [Show full text]
  • Organic Nomenclature: Naming Organic Molecules
    Organic Nomenclature: Naming Organic Molecules Mild Vegetable Alkali Aerated Alkali What’s in a name? Tartarin Glauber's Alkahest Alkahest of Van Helmot Fixed Vegetable Alkali Russian Pot Ash Cendres Gravellees Alkali Mild Vegetable Oil of Tartar Pearl Ash Tartar Alkahest of Reapour K2CO3 Alkali of Reguline Caustic Sal Juniperi Potassium Carbonate Ash ood Alkali of Wine Lees Salt of Tachenius W Fixed Sal Tartari Sal Gentianae Alkali Salt German Ash Salt of Wormwood Cineres Clavellati Sal Guaiaci exSal Ligno Alkanus Vegetablis IUPAC Rules for naming organic molecules International Union of Pure and Applied Chemists 3 Name Molecular Prefix Formula Methane CH4 Meth Ethane C2H6 Eth Alkanes Propane C3H8 Prop Butane C4H10 But CnH2n+2 Pentane C5H12 Pent Hexane C6H14 Hex Heptane C7H16 Hept Octane C8H18 Oct Nonane C9H20 Non Decane C10H22 Dec 4 Structure of linear alkanes propane butane pentane hexane heptane octane nonane decane 5 Constitutional Isomers: molecules with same molecular formula but differ in the way in which the atoms are connected to each other 6 Physical properties of constiutional isomers 7 Isomers n # of isomers 1 1 2 1 The more carbons in a 3 1 molecule, the more 4 2 possible ways to put 5 3 them together. 6 5 7 9 8 18 9 35 10 75 15 4,347 25 36,797,588 8 Naming more complex molecules hexane C6H14 9 Naming more complex molecules Step 1: identify the longest continuous linear chain: this will be the root name: this is the root name 2 4 6 longest chain = 6 (hexane) 1 3 5 2 4 3 4 3 2 2 1 5 4 1 3 5 correct 1 incorrect longest chain = 5 (pentane) longest chain = 5 (pentane) 1 3 1 2 2 3 4 4 longest chain = 4 (butane) longest chain = 4 (butane) 10 Naming more complex molecules Step 2: identify all functional group (the groups not part of the “main chain”) CH3 2 4 4 3 2 1 5 1 3 5 CH3 main chain: pentane main chain: pentane CH3 1 3 1 2 2 3 4 4 CH3 CH3 CH3 main chain: butane main chain: butane 11 Alkyl groups: fragments of alkanes H H empty space (point where it H C H H C attaches to something else) H H methane methyl CH4 CH3 12 More generally..
    [Show full text]
  • Experimental Study of N-Decane Decomposition with Microsecond Pulsed Discharge Plasma
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 April 2017 doi:10.20944/preprints201704.0126.v1 Article Experimental Study of n-Decane Decomposition with Microsecond Pulsed Discharge Plasma Feilong Song 1, Di Jin 1, Min Jia 1, Wenwen Wei 2, Huimin Song 1 and Yun Wu 1,3,* 1 Science and Technology on Plasma Dynamics Laboratory, Airforce Engineering University, Xi’an 710038, China; [email protected] (F.S.); [email protected] (D.J.); [email protected] (M.J.); [email protected] (H.S.) 2 State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] (W.W.) 3 Science and Technology on Plasma Dynamics Laboratory, Xi’an Jiaotong University, Xi’an 710049, China; * Correspondence: [email protected]; Tel.: +0086-29-8478-7527 Abstract: A highly-integrated experimental system for plasma decomposition of fuels was built. Experiments were conducted and confirmed that macromolecular chain hydrocarbons were cracked by large-gap dielectric barrier discharge under the excitation of a microsecond-pulse power supply. Alkanes and olefins with a C atom number smaller than 10 as well as hydrogen were found in the cracked products of n-decane (n-C10H22). The combination of preheating and plasma decomposition had strong selectivity for olefins. Under strong discharge conditions, micromolecular olefins were found in the products. Moreover, there was a general tendency that micromolecular olefins gradually accounted for higher percentage of products at higher temperature and discharge frequency. Keywords: Plasma; DBD; decomposition; n-decane 1. Introduction The continuous rotating detonation engine (CRDE) has tremendous potential for improving the performances of aero-propellers [1-3].
    [Show full text]
  • Hydrocarbons, Bp 36°-216 °C 1500
    HYDROCARBONS, BP 36°-216 °C 1500 FORMULA: Table 1 MW: Table 1 CAS: Table 1 RTECS: Table 1 METHOD: 1500, Issue 3 EVALUATION: PARTIAL Issue 1: 15 August 1990 Issue 3: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: cyclohexane n-heptane n-octane (Synonyms in Table 1) cyclohexene n-hexane n-pentane n-decane methylcyclohexane n-undecane n-dodecane n-nonane SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE [1] TECHNIQUE: GAS CHROMATOGRAPHY, FID [1] (coconut shell charcoal, 100 mg/50 mg) ANALYTE: Hydrocarbons listed above FLOW RATE: Table 3 DESORPTION: 1 mL CS2; stand 30 min VOL-MIN: Table 3 -MAX: Table 3 INJECTION VOLUME: 1 µL SHIPMENT: Routine TEMPERATURES SAMPLE -INJECTION: 250 °C STABILITY: 30 days @ 5 °C -DETECTOR: 300 °C -COLUMN: 35 °C (8 min) - 230 °C (1 min) BLANKS: 10% of samples ramp (7.5 °C /min) CARRIER GAS: Helium, 1 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Table 3 ID; 3.00-µm film 100% dimethyl polysiloxane BIAS: Table 3 CALIBRATION: Solutions of analytes in CS2 Ö OVERALL PRECISION ( rT): Table 3 RANGE: Table 4 ACCURACY: Table 3 ESTIMATED LOD: Table 4 þ PRECISION ( r): Table 4 APPLICABILITY: This method may be used for simultaneous measurements; however, interactions between analytes may reduce breakthrough volumes and alter analyte recovery. INTERFERENCES: At high humidity, the breakthrough volumes may be reduced. Other volatile organic solvents such as alcohols, ketones, ethers, and halogenated hydrocarbons are potential interferences. OTHER METHODS: This method is an update for NMAM 1500 issued on August 15, 1994 [2] which was based on methods from the 2nd edition of the NIOSH Manual of Analytical Methods: S28, cyclohexane [3]; S82, cyclohexene [3]; S89, heptane [3]; S90, hexane [3]; S94, methylcyclohexane [3]; S378, octane [4]; and S379, pentane [4].
    [Show full text]
  • Section 2. Hazards Identification OSHA/HCS Status : This Material Is Considered Hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)
    SAFETY DATA SHEET Flammable Liquefied Gas Mixture: 2-Methylpentane / 2,2-Dimethylbutane / 2, 3-Dimethylbutane / 3-Methylpentane / Benzene / Carbon Dioxide / Decane / Dodecane / Ethane / Ethyl Benzene / Heptane / Hexane / Isobutane / Isooctane / Isopentane / M- Xylene / Methane / N-Butane / N-Pentane / Neopentane / Nitrogen / Nonane / O- Xylene / Octane / P-Xylene / Pentadecane / Propane / Tetradecane / Toluene / Tridecane / Undecane Section 1. Identification GHS product identifier : Flammable Liquefied Gas Mixture: 2-Methylpentane / 2,2-Dimethylbutane / 2, 3-Dimethylbutane / 3-Methylpentane / Benzene / Carbon Dioxide / Decane / Dodecane / Ethane / Ethyl Benzene / Heptane / Hexane / Isobutane / Isooctane / Isopentane / M- Xylene / Methane / N-Butane / N-Pentane / Neopentane / Nitrogen / Nonane / O-Xylene / Octane / P-Xylene / Pentadecane / Propane / Tetradecane / Toluene / Tridecane / Undecane Other means of : Not available. identification Product type : Liquefied gas Product use : Synthetic/Analytical chemistry. SDS # : 018818 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : FLAMMABLE GASES - Category 1 substance or mixture GASES UNDER PRESSURE - Liquefied gas SKIN IRRITATION - Category 2 GERM CELL MUTAGENICITY - Category 1 CARCINOGENICITY - Category 1 TOXIC TO REPRODUCTION (Fertility) - Category 2 TOXIC TO REPRODUCTION (Unborn child) - Category 2 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Narcotic effects) - Category 3 SPECIFIC TARGET ORGAN TOXICITY (REPEATED EXPOSURE) - Category 2 AQUATIC HAZARD (ACUTE) - Category 2 AQUATIC HAZARD (LONG-TERM) - Category 1 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : Extremely flammable gas. May form explosive mixtures with air.
    [Show full text]
  • Agricultural Commodity Protection by Phosphine Fumigation: Programmatic Environmental Assessment Tools Annex
    AGRICULTURAL COMMODITY PROTECTION BY PHOSPHINE FUMIGATION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT TOOLS ANNEX NOVEMBER 2013 This publication was produced for review by the United States Agency for International Development (USAID). It was prepared under USAID’s Global Environmental Management Support (GEMS) project. Cover photos: Phosphine fumigation monitoring equipment (top left), DIMEGSA Pest Control staff in Guatemala (top right), USAID food commodities stored in a warehouse (bottom). COMMODITY PROTECTION BY PHOSPHINE FUMIGATION IN USAID FOOD AID PROGRAMS PROGRAMMATIC ENVIRONMENTAL ASSESSMENT TOOLS ANNEX Updated December 2015 (original NOVEMBER 2013) Contract No.: AID-OAA-M-11-00021 Prepared for: Office of Food for Peace Bureau for Democracy, Conflict and Humanitarian Assistance United States Agency for International Development Prepared under: The Global Environmental Management Support Project (GEMS), Award Number AID-OAA-M-11-00021. The Cadmus Group, Inc., prime contractor (www.cadmusgroup.com). Sun Mountain International, principal partner (www.smtn.org). DISCLAIMER Until and unless this document is approved by USAID as a 22 CFR 216 Programmatic Environmental Assessment, the contents may not necessarily reflect the views of the United States Agency for International Development or the United States Government. TABLE OF CONTENTS ANNEX T-1: GUIDE: FUMIGATION COMPLIANCE GUIDANCE FOR USAID PARTNERS…..…….1 ANNEX T-2: TEMPLATE: FOOD COMMODITY PROTECTION PERSUAP FOR PHOSPHINE FUMIGATION & CONTACT PESTICIDES…………………………………………………..…………4 ANNEX
    [Show full text]
  • Universal Chemical Markup (UCM) - a New Format for Common Chemical Data
    Universal Chemical Markup (UCM) - A new format for common chemical data Background: We wish to introduce a new chemical format called UCM (Universal Chemical Markup). The format is based on XML (Extensible Markup Language) and its first version focuses on recording chemical structures and their properties. Results: UCM currently supports structures containing isotopes, ions and various types of bonding s t including delocalized bonds. Properties can be expressed by combining UCM with UnitsML n i r (Units Markup Language). Using UnitsML one defines quantities with scientific units, and P e then refers to them in UCM when recording property values. Users can also add literature r P references with BibTeXML (BibTeX Markup Language) and annotate the recorded data using plain text or XHTML (Extensible Hypertext Markup Language) descriptions. In contrast to presently available general-purpose chemical formats, UCM offers built-in validation, which combines both grammar and pattern-based XML schema languages. Thus, all recorded data can be precisely validated by UCM schemas in standard XML validators. Conclusions: We developed the structure for UCM from scratch on the basis of an analysis described in our previous article. Starting from scratch allowed us to integrate BibTeXML, UnitsML and XHTML as well as chemical line notations and identifiers into UCM. It also helped us to avoid unnecessary redundant parts and create the implementation that aims to minimize ambiguity and is designed to be easily extensible in the future. PeerJ PrePrints |
    [Show full text]
  • Dipyrazolylphosphanes in Condensation and P–N/P–P Bond Metathesis Reactions
    Dipyrazolylphosphanes in Condensation and P–N/P–P Bond Metathesis Reactions DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Bereich Mathematik und Naturwissenschaften der Technischen Universität Dresden von M.Sc. Robin Schoemaker geboren am 05.07.1991 in Nordhorn Eingereicht am 09.06.2020 Verteidigt am 04.09.2020 Gutachter: Prof. Dr. Jan J. Weigand Prof. Dr. Christian Müller Die Dissertation wurde in der Zeit von 11/2015 bis 06/2020 in der Professur für Anorganische Molekülchemie der Technischen Universität Dresden angefertigt. I am very much indebted to Prof. Dr. Jan J. Weigand for his generous support, help and advice. Content 1. Introduction ................................................................................................................... 3 1.1. Pyrazolyl-substituted Phosphanes – Synthesis and Application in Condensation Reactions ........................................................................................................................... 4 1.2. Pyrazolyl-substituted Phosphorus Compounds in Scrambling Reactions .................. 7 1.3. Polyphosphanes in Methylation Reactions ............................................................... 12 1.4. Classification of Pyrazolylphosphanes ..................................................................... 14 2. Objectives .................................................................................................................... 16 3. Synthesis of Pyrazolylphosphanes .............................................................................
    [Show full text]