Fourier Analysis on the Hypercube, the Coefficient Problem, And

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Analysis on the Hypercube, the Coefficient Problem, And Fourier Analysis on the Hypercube, the Coefficient Problem, and Applications by Ganesh Ajjanagadde S.B., Massachusetts Institute of Technology (2015) M.Eng., Massachusetts Institute of Technology (2016) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 ○c Massachusetts Institute of Technology 2020. All rights reserved. Author................................................................ Department of Electrical Engineering and Computer Science April 28, 2020 Certified by. Gregory Wornell Professor of Electrical Engineering and Computer Science Thesis Supervisor Certified by. Henry Cohn Senior Principal Researcher, Microsoft Research New England Thesis Supervisor Accepted by . Leslie A. Kolodziejski Professor of Electrical Engineering and Computer Science Chair, Department Committee on Graduate Students 2 Fourier Analysis on the Hypercube, the Coefficient Problem, and Applications by Ganesh Ajjanagadde Submitted to the Department of Electrical Engineering and Computer Science on April 28, 2020, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science Abstract In this dissertation, we primarily study some problems that revolve around Fourier analysis. More specifically we focus on the magnitudes of the frequency components. Firstly, we perform a study on the hypercube. It is well known that the Delsarte lin- ear programming bounds provide rich information on the magnitudes of the Fourier coefficients, grouped by Hamming weight. Classically, such information is primarily used to attack coding problems, where the objective is to maximize cardinality of a subset of a metric space subject to a minimum distance constraint. Here, we use it to study anticoding problems, where the objective is to maximize cardinality of a subset of a metric space subject to a maximum distance (diameter) constraint. One moti- vation for such study is the problem of finding memories that are cheap to update, where the cost of an update is a function of the distance in the metric space. Such a view naturally supports the study of different cost functions going beyond hard diam- eter constraints. We work accordingly with different cost functions, with a particular emphasis on completely monotonic functions. Our emphasis is on the phenomenon of “universal optimality”, where the same subset (anticode) simultaneously optimizes a wide range of natural cost functions. Among other things, our work here gives some answers to a question in computer science, namely finding Boolean functions with maximal noise stability subjected to an expected value constraint. Secondly, we work with Fourier analysis on the integers modulo a number by draw- ing upon Nazarov’s general solution to the “coefficient problem”. Roughly speaking, the coefficient problem asks one to construct time domain signals with prescribed magnitudes of frequency components, subject to certain natural constraints on the signal. In particular, Nazarov’s solution works with lp constraints in time. This solution to the coefficient problem allows us to give an essentially complete resolu- tion to the mathematical problem of designing optimal coded apertures that arises in computational imaging. However, the resolution we provide is for an l constraint on the aperture, corresponding to partial occlusion. We believe it is important1 to also examine a binary valued (f0; 1g) constraint on the aperture as one does not need to synthesize partial occluders for such apertures. We therefore provide some 3 preliminary results as well as directions for future research. Finally, inspired by the recent breakthroughs in understanding the d = 8; 24 cases of sphere packing and universal optimality in Rd, we attempt to show that the associated lattices (E8 and the Leech lattice for d = 8; 24 respectively) are also optimal for the problem of vector quantization in the sense of minimizing mean squared error. Accordingly, we develop a dispersion and anticoding based approach to lower bounds on the mean squared error. We also generalize Tóth’s method, which shows optimality of the hexagonal lattice quantizer for d = 2, to arbitrary d. To the best of our knowledge, these methods give the first rigorous improved lower bounds for the mean squared error for all large enough d since the work of Zador over 50 years ago. Thesis Supervisor: Gregory Wornell Title: Professor of Electrical Engineering and Computer Science Thesis Supervisor: Henry Cohn Title: Senior Principal Researcher, Microsoft Research New England 4 Acknowledgments It is a Herculean task to express my gratitude to all who have contributed directly and indirectly to my adventures in graduate school and in this dissertation. I can only offer a few succinct remarks here. For those of you not explicitly mentioned here:first off, I am confident that you are already aware of my deep respect for you, andthatyou would not derive much meaning or pleasure from an explicit acknowledgement here. Secondly, I am grateful for the very fact that you are examining this dissertation. I hope that you find it at best illuminating, and at worst somewhat entertaining. Keeping this in my mind, I now turn to some of the most important people, hoping that you understand how much you have meant to me. First, I thank my parents, Venkataramana and Vijaya Ajjanagadde. To put it simply: I am who I am because of you; any merits I might have are due to you, and any demerits are mine alone. Second, I thank my thesis advisers, Profs. Gregory Wornell and Henry Cohn. Both of you have not only been extremely patient, supportive, infectiously optimistic, and insightful with respect to research, but have also extended it to my development as a person. It was an honor to be your student. Third, I thank Prof. Yury Polyanskiy, my thesis committee member. It is pretty safe to say that I was forged as a researcher in his smithy as an undergraduate. I am also grateful to him for exposing me to the wonders of the Russian intelligentsia. Fourth, I acknowledge several professors with whom I have had stimulating inter- actions over the past eight years here at MIT: Profs. Guy Bresler, Polina Golland, Alexandre Megretski, Elchanan Mossel, John Tsitsiklis, George Verghese, Alan Will- sky, and Lizhong Zheng. Fifth, I acknowledge the friends who have served as a bedrock during my time here at MIT: Mohamed AlHajri, Nirav Bhan, Kishor Bhat, Austin Collins, Matthew de Courcy-Ireland, Igor Kadota, Pranav Kaundinya, Joshua Ka-Wing Lee, Eren Kizildag, Suhas Kowshik, Fabián Kozynski, Pavitra Krishnaswamy, Ashwin Kumar, Tarek Lahlou, Bhavesh Lalwani, Anuran Makur, Dheeraj Nagaraj, Deepak Narayanan, 5 James Noraky, Or Ordentlich, Rishi Patel, David Qiu, Govind Ramnarayan, Ankit Rawat, Arman Rezaee, Hajir Roozbehani, Tuhin Sarkar, Anjan Soumyanarayanan, Harihar Subramanyam, James Thomas, Christos Thrampoulidis, Aditya Venkatra- mani, and Adam Yedidia. Sixth, I acknowledge the outstanding labmates (past and present) who have made the Signals, Information, and Algorithms Lab a special place: Toros Arikan, Yuheng Bu, Qing He, Tejas Jayashankar, Gauri Joshi, Gary Lee, Emin Martinian, Safa Medin, Gal Shulkind, Atulya Yellepeddi, and Xuhong Zhang. I also acknowledge the always friendly and helpful administrative assistant Tricia O’Donnell. Finally, I thank my extended family. They have been a very deep foundation during the times when I could not see the light at the end of the tunnel. In particular, I dedicate this thesis to my grandmothers Parvathi Ajjanagadde and Shankari Bhat, who instilled a deep love for education and knowledge in their descendants in spite of very difficult circumstances. The material in this dissertation is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. CCF- 1816209. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. Much of the work presented in Chapter 4 was performed while I was at Microsoft Research New England, whose support I gratefully acknowledge. 6 Contents 1 Introduction 13 1.1 Motivation . 13 1.1.1 Hamming space . 14 1.1.2 Discrete Fourier transforms . 15 1.1.3 Euclidean space . 16 1.1.4 General remarks . 17 2 Linear Programming Bounds and Anticodes in Hamming Space 19 2.1 Introduction . 19 2.2 Main results . 24 2.2.1 Linear programming and isodiametry in Hamming space . 24 2.2.2 Universal optimality for special subcubes . 24 2.2.3 A mean value theorem for noise stability . 27 2.2.4 Large n and balls versus subcubes . 28 2.3 Linear programming and isodiametry in Hamming space . 28 2.3.1 LP bounds and Fourier analysis on Hamming space . 28 2.3.2 Proof of Theorem 1 . 39 2.4 Universal optimality of some subcubes . 47 2.5 Connection to maximum noise stability . 56 2.6 A mean value theorem for noise stability . 60 2.7 Large n and balls versus subcubes . 62 2.8 Open problems . 76 7 3 Near-Optimal Coded Apertures for Imaging via Nazarov’s Theorem 79 3.1 Introduction . 80 3.2 Model . 87 3.2.1 Background on linear estimation . 88 3.2.2 Model clarifications and intuition . 91 3.3 Results . 92 3.3.1 Lower bound . 92 3.3.2 Upper bound . 96 3.3.3 Greedy algorithm . 110 3.3.4 Simulations . 110 3.4 Discussion and Future Work . 111 4 New lower bounds for the mean squared error of vector quantizers119 4.1 Introduction . 119 4.2 Main results . 123 4.3 Proofs . 125 4.3.1 Rederivation of Zador’s lower bound . 126 4.3.2 The general case . 127 4.3.3 Tóth/Newman’s hexagon theorem . 132 4.3.4 Conjectured bound for lattices . 136 4.3.5 Towards a proof for lattices . 140 4.4 Discussion and Future Work . 144 5 Conclusion and Future Directions 147 Appendices 150 A Proofs for Chapter 3 151 8 List of Figures 3-1 A pinhole camera.
Recommended publications
  • Sequence Distance Embeddings
    Sequence Distance Embeddings by Graham Cormode Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Computer Science January 2003 Contents List of Figures vi Acknowledgments viii Declarations ix Abstract xi Abbreviations xii Chapter 1 Starting 1 1.1 Sequence Distances . ....................................... 2 1.1.1 Metrics ............................................ 3 1.1.2 Editing Distances ...................................... 3 1.1.3 Embeddings . ....................................... 3 1.2 Sets and Vectors ........................................... 4 1.2.1 Set Difference and Set Union . .............................. 4 1.2.2 Symmetric Difference . .................................. 5 1.2.3 Intersection Size ...................................... 5 1.2.4 Vector Norms . ....................................... 5 1.3 Permutations ............................................ 6 1.3.1 Reversal Distance ...................................... 7 1.3.2 Transposition Distance . .................................. 7 1.3.3 Swap Distance ....................................... 8 1.3.4 Permutation Edit Distance . .............................. 8 1.3.5 Reversals, Indels, Transpositions, Edits (RITE) . .................... 9 1.4 Strings ................................................ 9 1.4.1 Hamming Distance . .................................. 10 1.4.2 Edit Distance . ....................................... 10 1.4.3 Block Edit Distances . .................................. 11 1.5 Sequence Distance Problems . .................................
    [Show full text]
  • Bilinear Forms Over a Finite Field, with Applications to Coding Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF COMBINATORIAL THEORY, Series A 25, 226-241 (1978) Bilinear Forms over a Finite Field, with Applications to Coding Theory PH. DELSARTE MBLE Research Laboratory, Brussels, Belgium Communicated by J. H. can Lint Received December 7, 1976 Let 0 be the set of bilinear forms on a pair of finite-dimensional vector spaces over GF(q). If two bilinear forms are associated according to their q-distance (i.e., the rank of their difference), then Q becomes an association scheme. The characters of the adjacency algebra of Q, which yield the MacWilliams transform on q-distance enumerators, are expressed in terms of generalized Krawtchouk polynomials. The main emphasis is put on subsets of s2 and their q-distance structure. Certain q-ary codes are attached to a given XC 0; the Hamming distance enumerators of these codes depend only on the q-distance enumerator of X. Interesting examples are provided by Singleton systems XC 0, which are defined as t-designs of index 1 in a suitable semilattice (for a given integer t). The q-distance enumerator of a Singleton system is explicitly determined from the parameters. Finally, a construction of Singleton systems is given for all values of the parameters. 1. INTRODUCTION Classical coding theory may be introduced as follows. Let r denote a finite-dimensional vector space over the finite field K. The Hamming weight wt(f) of a vector f E r is the number of nonzero coordinates off in a fixed K-basis of lY Then (r, wt) is a normed space, called Hamming space; and a code simply is a nonempty subset of r endowed with the Hamming distance attached to wt.
    [Show full text]
  • Scribe Notes
    6.440 Essential Coding Theory Feb 19, 2008 Lecture 4 Lecturer: Madhu Sudan Scribe: Ning Xie Today we are going to discuss limitations of codes. More specifically, we will see rate upper bounds of codes, including Singleton bound, Hamming bound, Plotkin bound, Elias bound and Johnson bound. 1 Review of last lecture n k Let C Σ be an error correcting code. We say C is an (n, k, d)q code if Σ = q, C q and ∆(C) d, ⊆ | | | | ≥ ≥ where ∆(C) denotes the minimum distance of C. We write C as [n, k, d]q code if furthermore the code is a F k linear subspace over q (i.e., C is a linear code). Define the rate of code C as R := n and relative distance d as δ := n . Usually we fix q and study the asymptotic behaviors of R and δ as n . Recall last time we gave an existence result, namely the Gilbert-Varshamov(GV)→ ∞ bound constructed by greedy codes (Varshamov bound corresponds to greedy linear codes). For q = 2, GV bound gives codes with k n log2 Vol(n, d 2). Asymptotically this shows the existence of codes with R 1 H(δ), which is similar≥ to− Shannon’s result.− Today we are going to see some upper bound results, that≥ is,− code beyond certain bounds does not exist. 2 Singleton bound Theorem 1 (Singleton bound) For any code with any alphabet size q, R + δ 1. ≤ Proof Let C Σn be a code with C Σ k. The main idea is to project the code C on to the first k 1 ⊆ | | ≥ | | n k−1 − coordinates.
    [Show full text]
  • The Chromatic Number of the Square of the 8-Cube
    The chromatic number of the square of the 8-cube Janne I. Kokkala∗ and Patric R. J. Osterg˚ard¨ † Department of Communications and Networking Aalto University School of Electrical Engineering P.O. Box 13000, 00076 Aalto, Finland Abstract A cube-like graph is a Cayley graph for the elementary abelian group of order 2n. In studies of the chromatic number of cube-like k graphs, the kth power of the n-dimensional hypercube, Qn, is fre- quently considered. This coloring problem can be considered in the k framework of coding theory, as the graph Qn can be constructed with one vertex for each binary word of length n and edges between ver- tices exactly when the Hamming distance between the corresponding k words is at most k. Consequently, a proper coloring of Qn corresponds to a partition of the n-dimensional binary Hamming space into codes with minimum distance at least k + 1. The smallest open case, the 2 chromatic number of Q8, is here settled by finding a 13-coloring. Such 13-colorings with specific symmetries are further classified. 1 Introduction arXiv:1607.01605v1 [math.CO] 6 Jul 2016 A cube-like graph is a Cayley graph for the elementary abelian group of order 2n. One of the original motivations for studying cube-like graphs was the fact that they have only integer eigenvalues [5]. Cube-like graphs also form a generalization of the hypercube. ∗Supported by Aalto ELEC Doctoral School, Nokia Foundation, Emil Aaltonen Foun- dation, and by Academy of Finland Project 289002. †Supported in part by Academy of Finland Project 289002.
    [Show full text]
  • Constructing Covering Codes
    Research Collection Master Thesis Constructing Covering Codes Author(s): Filippini, Luca Teodoro Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010633987 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Constructing Covering Codes Master Thesis Luca Teodoro Filippini Thursday 24th March, 2016 Advisors: Prof. Dr. E. Welzl, C. Annamalai Department of Theoretical Computer Science, ETH Z¨urich Abstract Given r, n N, the problem of constructing a set C 0,1 n such that every∈ element in 0,1 n has Hamming distance at⊆ most { }r from some element in C is called{ }the covering code construction problem. Con- structing a covering code of minimal size is such a hard task that even for r = 1, n = 10 we don’t know the exact size of the minimal code. Therefore, approximations are often studied and employed. Among the several applications that such a construction has, it plays a key role in one of the fastest 3-SAT algorithms known to date. The main contribution of this thesis is presenting a Las Vegas algorithm for constructing a covering code with linear radius, derived from the famous Monte Carlo algorithm of random codeword sampling. Our algorithm is faster than the deterministic algorithm presented in [5] by a cubic root factor of the polynomials involved. We furthermore study the problem of determining the covering radius of a code: it was already proven -complete for r = n/2, and we extend the proof to a wider range ofN radii.
    [Show full text]
  • About Chapter 13
    Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981 You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links. About Chapter 13 In Chapters 8{11, we established Shannon's noisy-channel coding theorem for a general channel with any input and output alphabets. A great deal of attention in coding theory focuses on the special case of channels with binary inputs. Constraining ourselves to these channels simplifies matters, and leads us into an exceptionally rich world, which we will only taste in this book. One of the aims of this chapter is to point out a contrast between Shannon's aim of achieving reliable communication over a noisy channel and the apparent aim of many in the world of coding theory. Many coding theorists take as their fundamental problem the task of packing as many spheres as possible, with radius as large as possible, into an N-dimensional space, with no spheres overlapping. Prizes are awarded to people who find packings that squeeze in an extra few spheres. While this is a fascinating mathematical topic, we shall see that the aim of maximizing the distance between codewords in a code has only a tenuous relationship to Shannon's aim of reliable communication. 205 Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981 You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
    [Show full text]
  • Lincode – Computer Classification of Linear Codes
    LINCODE – COMPUTER CLASSIFICATION OF LINEAR CODES SASCHA KURZ ABSTRACT. We present an algorithm for the classification of linear codes over finite fields, based on lattice point enumeration. We validate a correct implementation of our algorithm with known classification results from the literature, which we partially extend to larger ranges of parameters. Keywords: linear code, classification, enumeration, code equivalence, lattice point enumeration ACM: E.4, G.2, G.4 1. INTRODUCTION Linear codes play a central role in coding theory for several reasons. They permit a compact representation via generator matrices as well as efficient coding and decoding algorithms. Also multisets of points in the projective space PG(k − 1; Fq) of cardinality n correspond to linear [n; k]q codes, see e.g. [7]. So, let q be a prime power and Fq be the field of order q.A q-ary linear code of length n, dimension k, and minimum (Hamming) distance at least d is called an [n; k; d]q code. If we do not want to specify the minimum distance d, then we also speak of an [n; k]q code or of an [n; k; fw1; : : : ; wlg]q if the non-zero codewords have weights in fw1; : : : ; wkg. If for the binary case q = 2 all weights wi are divisible by 2, we also speak of an even code. We can also n look at those codes as k-dimensional subspaces of the Hamming space Fq . An [n; k]q code can be k×n k represented by a generator matrix G 2 Fq whose row space gives the set of all q codewords of the code.
    [Show full text]
  • An Index Structure for Fast Range Search in Hamming Space By
    An Index Structure for Fast Range Search in Hamming Space by Ernesto Rodriguez Reina A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in Computer Science in Faculty of Science Computer Science University of Ontario Institute of Technology November 2014 c Ernesto Rodriguez Reina, 2014 Abstract An Index Structure for Fast Range Search in Hamming Space Ernesto Rodriguez Reina Master in Computer Science Faculty of Science University of Ontario Institute of Technology 2014 This thesis addresses the problem of indexing and querying very large databases of binary vectors. Such databases of binary vectors are a common occurrence in domains such as information retrieval and computer vision. We propose an indexing structure consisting of a compressed trie and a hash table for supporting range queries in Hamming space. The index structure, which can be updated incrementally, is able to solve the range queries for any radius. Out approach minimizes the number of memory access, and as result significantly outperforms state-of-the-art approaches. Keywords: range queries, r-neighbors queries, hamming distance. ii To my beloved wife for being my source of inspiration. iii Acknowledgements I would like to express my special appreciation and thanks to my advisors Professor Dr. Ken Pu and Professor Dr. Faisal Qureshi for the useful comments, remarks and engagement throughout the learning process of this master thesis. You both have been tremendous mentors for me. Your advices on both research as well as on my career have been priceless. I owe my deepest gratitude to my college Luis Zarrabeitia for introducing me to Professor Qureshi and Professor Pu, and also for all your help to came to study to the UOIT.
    [Show full text]
  • L Repository
    University of Warwick institutional repository: http://go.warwick.ac.uk/wrap A Thesis Submitted for the Degree of PhD at the University of Warwick http://go.warwick.ac.uk/wrap/61310 This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. Sequence Distance Embeddings by Graham Cormode Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Computer Science January 2003 Contents List of Figures vi Acknowledgments viii Declarations ix Abstract xi Abbreviations xii Chapter 1 Starting 1 1.1 Sequence Distances . ....................................... 2 1.1.1 Metrics ............................................ 3 1.1.2 Editing Distances ...................................... 3 1.1.3 Embeddings . ....................................... 3 1.2 Sets and Vectors ........................................... 4 1.2.1 Set Difference and Set Union . .............................. 4 1.2.2 Symmetric Difference . .................................. 5 1.2.3 Intersection Size ...................................... 5 1.2.4 Vector Norms . ....................................... 5 1.3 Permutations ............................................ 6 1.3.1 Reversal Distance ...................................... 7 1.3.2 Transposition Distance . .................................. 7 1.3.3 Swap Distance ......................................
    [Show full text]
  • A Tutorial on Quantum Error Correction
    Proceedings of the International School of Physics “Enrico Fermi”, course CLXII, “Quantum Computers, Algorithms and Chaos”, G. Casati, D. L. Shepelyansky and P. Zoller, eds., pp. 1–32 (IOS Press, Amsterdam 2006). c Societ`aItaliana di Fisica. ° A Tutorial on Quantum Error Correction Andrew M. Steane Centre for Quantum Computation, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England. A Tutorial on Quantum Error Correction 2 1. Introduction Quantum error correction (QEC) comes from the marriage of quantum mechanics with the classical theory of error correcting codes. Error correction is a central concept in classical information theory, and quantum error correction is similarly foundational in quantum information theory. Both are concerned with the fundamental problem of communication, and/or information storage, in the presence of noise. The codewords which arise in QEC are also interesting objects in their own right, displaying rich forms of entanglement. This introduction will concentrate on the essential ideas of QEC and on the construction and use of quantum error correcting codes. The motivation is that although QEC is now quite a well established subject, it remains only vaguely understood by many people interested in quantum information and computing, or little studied by students learning it, because it appears to require mathematical knowledge they do not possess, and to be limited in application. Introductions tend to stay at the level of single- error-correcting codes, and single-qubit encoding codes, but this is a mistake because some of the essential properties only emerge when multiple errors and encoding of multiple qubits are considered.
    [Show full text]
  • Notes 5.1: Fourier Transform, Macwillams Identities, and LP Bound February 2010 Lecturer: Venkatesan Guruswami Scribe: Venkat Guruswami & Srivatsan Narayanan
    Introduction to Coding Theory CMU: Spring 2010 Notes 5.1: Fourier Transform, MacWillams identities, and LP bound February 2010 Lecturer: Venkatesan Guruswami Scribe: Venkat Guruswami & Srivatsan Narayanan We will discuss the last and most sophisticated of our (upper) bounds on rate of codes with certain relative distance, namely the first linear programming bound or the first JPL bound due to McEliece, Rodemich, Rumsey, and Welch, 1977 (henceforth, MRRW). This bound is the best known asymptotic upper bound on the rate of a binary code for a significant range of relative distances (which is roughly δ 2 (0:273; 1=2)). We will present a complete and self-contained proof of the this bound. A variant called the second JPL bound gives the best known upper bound for the remainder of the range, and we will mention this bound (without proof) at the end. The linear programming bound is so-called because it is based on Delsarte's linear programming approach which shows that the distance distribution of a binary code satisfies a family of linear constraints whose coefficients are the evaluations of a certain family of orthogonal polynomials (in this case, the Krawtchouk polynomials). The optimum (maximum) of this linear program gives an upper bound on A(n; d). MRRW constructed good feasible solutions to the dual of linear program using tools from the theory of orthogonal polynomials, and their value gave an upper bound on A(n; d) by weak duality. In these notes, we will use Fourier analysis of functions defined on the hypercube to derive a relationship between the weight distribution of a linear code and its dual, called the MacWilliams identifies.
    [Show full text]
  • Generalizations of the Macwilliams Extension Theorem Serhii Dyshko
    Generalizations of the MacWilliams Extension Theorem Serhii Dyshko To cite this version: Serhii Dyshko. Generalizations of the MacWilliams Extension Theorem. General Mathematics [math.GM]. Université de Toulon, 2016. English. NNT : 2016TOUL0018. tel-01565075 HAL Id: tel-01565075 https://tel.archives-ouvertes.fr/tel-01565075 Submitted on 19 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ÉCOLE DOCTORALE Mer et Sciences (ED548) Institut de Mathématiques de Toulon THÈSE présentée par : Serhii DYSHKO soutenue le : 15 Décembre 2016 pour obtenir le grade de Docteur en Mathématiques Généralisations du Théorème d’Extension de MacWilliams THÈSE dirigée par : M. LANGEVIN Philippe Professeur, Université de Toulon JURY : M. AUBRY Yves Maître de conférence HDR, Université de Toulon M. GREFERATH Marcus Professeur, Aalto University M. LEROY André Professeur, Université d'Artois M. RANDRIAMBOLOLONA Hugues Maître de conférence, Telecom ParisTech M. WOOD Jay Professeur, Western Michigan University M. ZEMOR Gilles Professeur, Université de Bordeaux CONTENTS 1. Preliminaries :::::::::::::::::::::::::::::::: 1 1.1 Rings and modules . .1 1.2 Characters and the Fourier transform . .2 1.3 Hamming space and codes . .3 1.4 Categories of codes . .3 1.5 Additive codes . .4 2.
    [Show full text]