A Tutorial on Quantum Error Correction
Proceedings of the International School of Physics “Enrico Fermi”, course CLXII, “Quantum Computers, Algorithms and Chaos”, G. Casati, D. L. Shepelyansky and P. Zoller, eds., pp. 1–32 (IOS Press, Amsterdam 2006). c Societ`aItaliana di Fisica. ° A Tutorial on Quantum Error Correction Andrew M. Steane Centre for Quantum Computation, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England. A Tutorial on Quantum Error Correction 2 1. Introduction Quantum error correction (QEC) comes from the marriage of quantum mechanics with the classical theory of error correcting codes. Error correction is a central concept in classical information theory, and quantum error correction is similarly foundational in quantum information theory. Both are concerned with the fundamental problem of communication, and/or information storage, in the presence of noise. The codewords which arise in QEC are also interesting objects in their own right, displaying rich forms of entanglement. This introduction will concentrate on the essential ideas of QEC and on the construction and use of quantum error correcting codes. The motivation is that although QEC is now quite a well established subject, it remains only vaguely understood by many people interested in quantum information and computing, or little studied by students learning it, because it appears to require mathematical knowledge they do not possess, and to be limited in application. Introductions tend to stay at the level of single- error-correcting codes, and single-qubit encoding codes, but this is a mistake because some of the essential properties only emerge when multiple errors and encoding of multiple qubits are considered.
[Show full text]