Répercussion Du Développement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Genome-Wide Association Study Lystra P
Hayden et al. Respiratory Research (2018) 19:209 https://doi.org/10.1186/s12931-018-0890-0 RESEARCH Open Access Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study Lystra P. Hayden1,2* , Michael H. Cho2,3, Benjamin A. Raby1,2,3, Terri H. Beaty4, Edwin K. Silverman2,3, Craig P. Hersh2,3 and on behalf of the COPDGene Investigators Abstract Background: Childhood asthma is strongly influenced by genetics and is a risk factor for reduced lung function and chronic obstructive pulmonary disease (COPD) in adults. This study investigates self-reported childhood asthma in adult smokers from the COPDGene Study. We hypothesize that childhood asthma is associated with decreased lung function, increased risk for COPD, and that a genome-wide association study (GWAS) will show association with established asthma variants. Methods: We evaluated current and former smokers ages 45–80 of non-Hispanic white (NHW) or African American (AA) race. Childhood asthma was defined by self-report of asthma, diagnosed by a medical professional, with onset at < 16 years or during childhood. Subjects with a history of childhood asthma were compared to those who never had asthma based on lung function, development of COPD, and genetic variation. GWAS was performed in NHW and AA populations, and combined in meta-analysis. Two sets of established asthma SNPs from published literature were examined for association with childhood asthma. Results: Among 10,199 adult smokers, 730 (7%) reported childhood asthma and 7493 (73%) reported no history of asthma. Childhood asthmatics had reduced lung function and increased risk for COPD (OR 3.42, 95% CI 2.81–4.18). -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Comparison of Orthologs Across Multiple Species by Various Strategies
COMPARISON OF ORTHOLOGS ACROSS MULTIPLE SPECIES BY VARIOUS STRATEGIES BY HUI LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biophysics and Computational Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Eric Jakobsson, Chair, Director of Research Professor Gene E. Robinson Associate Professor Saurabh Sinha Assistant Professor Jian Ma Abstract Thanks to the improvement of genome sequencing technology, abundant multi-species genomic data now became available and comparative genomics continues to be a fast prospering filed of biological research. Through the comparison of genomes of different organisms, we can understand what, at the molecular level, distinguishes different life forms from each other. It shed light on revealing the evolution of biology. And it also helps to refine the annotations and functions of individual genomes. For example, through comparisons across mammalian genomes, we can give an estimate of the conserved set of genes across mammals and correspondingly, find the species-specific sets of genes or functions. However, comparative genomics can be feasible only if a meaningful classification of genes exists. A natural way to do so is to delineate sets of orthologous genes. However, debates exist about the appropriate way to define orthologs. It is originally defined as genes in different species which derive from speciation events. But such definition is not sufficient to derive orthologous genes due to the complexity of evolutionary events such as gene duplication and gene loss. While it is possible to correctly figure out all the evolutionary events with the true phylogenetic tree, the true phylogenetic tree itself is impractical to be inferred. -
Breakout Room 5 Poster Presentation Event
Akshara Chandrabalan 2020 NSERC USRA Bioresource Engineering, Supervisor Dr. Prasher 2020 Undergraduate Student Research Awards Predicting Biochar Sorption Capacities Using VIEW THE POSTERS Artificial Neural Networks Poster Presentation Event Breakout Room 5 Daniel Moses 2020 NSERC USRA (ZOOM) SEPTEMBER 17, 2020 @ 4pm Parasitology, Supervisor Dr. Salavati In search of the cryptic motif VI on trypanosomatid RNA editing ligases Richard Boivin 2020 NSERC USRA Antoine Gaudreau 2020 NSERC USRA 1 Natural Resource Sciences, Supervisor Dr. Humphries Bioresource Engineering, Supervisor Dr. Akbarzadeh Muriel Wong Min 2020 AES Brown Martlet USRA Evaluating regional patterns of traditional wildlife 3D Printed Agricultural Wastes for Advanced Food Science & Ag. Chemistry, Supervisor Dr. Karboune harvest in northern Quebec Biocomposites A Database Platform for The Selection of Appropriate Fat Substitutes as "Natural" Katerina Lazaris 2020 NSERC USRA Rowena Groeneveld 2020 NSERC USRA Food Ingredients Animal Science, Supervisor Dr. Bordignon Parasitology, Supervisor Dr. Beech Review: Methods to Improve Oocyte Competence and Modelling of a ligand gated ion channel from embryo Development in Prepubertal Animals to Caenorhabditis elegans experimentally shown to bind Liana Fortin-Hamel 2020 NSERC USRA Accerlerate genetic Gain 6 dopamine Parasitology, Supervisor Dr. Scott 2 Trisha Sackey 2020 NSERC USRA Effects of maternal nematode infection on spatial Food Science & Ag.Chemistry, Supervisor Dr. George Alex Zvezdin 2020 NSERC USRA learning and memory of young mouse pups Natural Resource Sciences, Supervisor Dr. Head Genotypic and Phenotypic Profiling of Staphylo- coccus aureus strains isolated from Canadian Impacts of Agricultural Practices on Yellow Perch Xavier Godin 2020 NSERC USRA Dairy Cattle for Antimicrobial Resistance Spawning Sites in Lac-Saint Pierre Québec Plant Science, Supervisor Dr. -
X Linked Disease in Females
J Med Genet 1993; 30: 177-184 177 ORIGINAL ARTICLES J Med Genet: first published as 10.1136/jmg.30.3.177 on 1 March 1993. Downloaded from X chromosome inactivation and the diagnosis of X linked disease in females R M Brown, G K Brown Abstract larly important in the brain which has an In studies of female patients with sus- obligatory requirement for aerobic glucose ox- pected deficiency of the Elm subunit of idation under normal circumstances. Rela- the pyruvate dehydrogenase complex, we tively modest reduction in PDH activity there- have found that X inactivation ratios of fore has significant consequences, especially 80:20 or greater occur at sufficient fre- for central nervous system function. quency in cultured fibroblasts to make Within the PDH complex, the Ela subunit exclusion of the diagnosis impossible in contains the pyruvate binding site and the about 25% of cases. Pyruvate dehydroge- phosphorylation sites by which the activity of nase Elm subunit deficiency is an X linked the whole complex is controlled.5 The gene for inborn error of metabolism which is well the Elca subunit is located on the short arm of defined biochemically and is unusual in the X chromosome in the region Xp22. 1.6 that most heterozygous females manifest However, in all reported series of patients with the condition. The diagnosis is usually PDH Ela deficiency, there are approximately established by measurement of enzyme equal numbers of males and females.2- The activity and the level of immunoreactive clinical presentation does differ between the protein and these analyses are most com- sexes with the acute metabolic form more monly performed on cultured fibroblasts common from the patients. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Structural and Functional Characterization of the N-Terminal Acetyltransferase Natc
Structural and functional characterization of the N-terminal acetyltransferase NatC Inaugural-Dissertation to obtain the academic degree Doctor rerum naturalium (Dr. rer. nat.) submitted to the Department of Biology, Chemistry, Pharmacy of Freie Universität Berlin by Stephan Grunwald Berlin October 01, 2019 Die vorliegende Arbeit wurde von April 2014 bis Oktober 2019 am Max-Delbrück-Centrum für Molekulare Medizin unter der Anleitung von PROF. DR. OLIVER DAUMKE angefertigt. Erster Gutachter: PROF. DR. OLIVER DAUMKE Zweite Gutachterin: PROF. DR. ANNETTE SCHÜRMANN Disputation am 26. November 2019 iii iv Erklärung Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen – die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; und dass diese Dissertation keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat. Berlin, 9. November 2020 Stephan Grunwald v vi Acknowledgement I would like to thank Prof. Oliver Daumke for giving me the opportunity to do the research for this project in his laboratory and for the supervision of this thesis. I would also like to thank Prof. Dr. Annette Schürmann from the German Institute of Human Nutrition (DifE) in Potsdam-Rehbruecke for being my second supervisor. From the Daumke laboratory I would like to especially thank Dr. Manuel Hessenberger, Dr. Stephen Marino and Dr. Tobias Bock-Bierbaum, who gave me helpful advice. I also like to thank the rest of the lab members for helpful discussions. I deeply thank my wife Theresa Grunwald, who always had some helpful suggestions and kept me alive while writing this thesis. -
1 Functional Annotation of Human Long Non-Coding Rnas Via Molecular Phenotyping 1 Jordan a Ramilowski , Chi Wai Yip , Saumya
bioRxiv preprint doi: https://doi.org/10.1101/700864; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping 2 Jordan A Ramilowski1,2#, Chi Wai Yip1,2#, Saumya Agrawal1,2, Jen-Chien Chang1,2, Yari Ciani3, 3 Ivan V Kulakovskiy4, Mickaël Mendez5, Jasmine Li Ching Ooi2, John F Ouyang6, Nick 4 Parkinson7, Andreas Petri8, Leonie Roos9, Jessica Severin1,2, Kayoko Yasuzawa1,2, Imad 5 Abugessaisa1,2, Altuna Akalin10, Ivan V Antonov11, Erik Arner1,2, Alessandro Bonetti2, 6 Hidemasa Bono12, Beatrice Borsari13, Frank Brombacher14, Chris JF Cameron15, Carlo Vittorio 7 Cannistraci16, Ryan Cardenas17, Melissa Cardon1, Howard Chang18, Josée Dostie19, Luca 8 Ducoli20, Alexander Favorov21, Alexandre Fort2, Diego Garrido13, Noa Gil22, Juliette Gimenez23, 9 Reto Guler14, Lusy Handoko2, Jayson Harshbarger2, Akira Hasegawa1,2, Yuki Hasegawa2, 10 Kosuke Hashimoto1,2, Norihito Hayatsu1, Peter Heutink24, Tetsuro Hirose25, Eddie L Imada26, 11 Masayoshi Itoh2,27, Bogumil Kaczkowski1,2, Aditi Kanhere17, Emily Kawabata2, Hideya 12 Kawaji27, Tsugumi Kawashima1,2, S. Thomas Kelly1, Miki Kojima1,2, Naoto Kondo2, Haruhiko 13 Koseki1, Tsukasa Kouno1,2, Anton Kratz2, Mariola Kurowska-Stolarska28, Andrew Tae Jun 14 Kwon1,2, Jeffrey Leek26, Andreas Lennartsson29, Marina Lizio1,2, Fernando López-Redondo1,2, 15 Joachim Luginbühl1,2, Shiori Maeda1, Vsevolod -
Celecoxib Treatment Alters the Gene Expression Profile of Normal Colonic Mucosa
1382 Celecoxib Treatment Alters the Gene Expression Profile of Normal Colonic Mucosa Oleg K. Glebov,1 Luz M. Rodriguez,1 Patrick Lynch,4 Sherri Patterson,4 Henry Lynch,5 Kenneth Nakahara,1 Jean Jenkins,1 Janet Cliatt,1 Casey-Jo Humbyrd,1 John DeNobile,3 Peter Soballe,3 Steven Gallinger,6 Aby Buchbinder,7 Gary Gordon,8 Ernest Hawk,2 and Ilan R. Kirsch1 1Genetics Branch, Center for Cancer Research; 2Division of Cancer Prevention, National Cancer Institute; 3Surgery Department, National Naval Medical Center, Bethesda, Maryland; 4University of Texas M.D. Anderson Cancer Center, Houston, Texas; 5Creighton University, Omaha, Nebraska; 6University of Toronto, Toronto, Ontario, Canada; 7Pharmacia, Peapack, New Jersey; and 8Ovation Pharma, Lincolnshire, Illinois Abstract A clinical trial was recently conducted to evaluate the safety Twenty-three of 25 pairs of colon biopsies taken before and efficacy of a selective inhibitor of cyclooxygenase-2 and after celecoxib treatment can be classified correctly (celecoxib) in hereditary nonpolyposis colon cancer by the pattern of gene expression in a leave-one-out patients. In a randomized, placebo-controlled phase I/II cross-validation. Immune response, particularly T- and B- multicenter trial, hereditary nonpolyposis colon cancer lymphocyte activation and early steps of inflammatory patients and gene carriers received either celecoxib at one reaction, cell signaling and cell adhesion, response to stress, of two doses or placebo. The goal was to evaluate the effects transforming growth factor-B signaling, and regulation of of these treatment arms on a number of endoscopic and apoptosis, are the main biological processes targeted by tissue-based biomarker end points after 12 months of celecoxib as shown by overrepresentation analysis of the treatment. -
WO 2015/089333 Al 18 June 2015 (18.06.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/089333 Al 18 June 2015 (18.06.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) C40B 30/04 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/069848 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 December 2014 ( 11.12.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/914,907 11 December 201 3 ( 11. 12.2013) US (84) Designated States (unless otherwise indicated, for every 61/987,414 1 May 2014 (01.05.2014) US kind of regional protection available): ARIPO (BW, GH, 62/010,975 11 June 2014 ( 11.06.2014) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: ACCURAGEN, INC. -
Investigating Developmental and Functional Deficits in Neurodegenerative
UNIVERSITY OF CALIFORNIA, IRVINE Investigating developmental and functional deficits in neurodegenerative disease using transcriptomic analyses DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Sciences by Ryan Gar-Lok Lim Dissertation Committee: Professor Leslie M. Thompson, Chair Assistant Professor Dritan Agalliu Professor Peter Donovan Professor Suzanne Sandmeyer 2016 Introduction, Figure 1.1 © 2014 Macmillan Publishers Limited. Appendix 1 © 2016 Elsevier Ltd. All other materials © 2016 Ryan Gar-Lok Lim DEDICATION This dissertation is dedicated to my parents, sister, and my wife. I love you all very much and could not have accomplished any of this without your love and support. Please take the time to reflect back on all of the moments we’ve shared, and know, that it is because of those moments I have been able to succeed. This accomplishment is as much yours as it is mine. ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES ix ACKNOWLEDGMENTS x CURRICULUM VITAE xiii ABSTRACT OF THE DISSERTATION xv Introduction Huntington’s disease, the neurovascular unit and the blood-brain barrier 1 1.1 Huntington’s Disease 1.2 HTT structure and function 1.2.1 Normal HTT function and possible loss-of-function contributions to HD 1.3 mHTT pathogenesis 1.3.1 The dominant pathological features of mHTT - a gain-of- toxic function? 1.3.2 Cellular pathologies and non-neuronal contributions to HD 1.4 The neurovascular unit and the blood-brain barrier 1.4.1 Structure and function -
Molecular Analyses of Malignant Pleural Mesothelioma
Molecular Analyses of Malignant Pleural Mesothelioma Shir Kiong Lo National Heart and Lung Institute Imperial College Dovehouse Street London SW3 6LY A thesis submitted for MD (Res) Faculty of Medicine, Imperial College London 2016 1 Abstract Malignant pleural mesothelioma (MPM) is an aggressive cancer that is strongly associated with asbestos exposure. Majority of patients with MPM present with advanced disease and the treatment paradigm mainly involves palliative chemotherapy and best supportive care. The current chemotherapy options are limited and ineffective hence there is an urgent need to improve patient outcomes. This requires better understanding of the genetic alterations driving MPM to improve diagnostic, prognostic and therapeutic strategies. This research aims to gain further insights in the pathogenesis of MPM by exploring the tumour transcriptional and mutational profiles. We compared gene expression profiles of 25 MPM tumours and 5 non-malignant pleura. This revealed differentially expressed genes involved in cell migration, invasion, cell cycle and the immune system that contribute to the malignant phenotype of MPM. We then constructed MPM-associated co-expression networks using weighted gene correlation network analysis to identify clusters of highly correlated genes. These identified three distinct molecular subtypes of MPM associated with genes involved in WNT and TGF-ß signalling pathways. Our results also revealed genes involved in cell cycle control especially the mitotic phase correlated significantly with poor prognosis. Through exome analysis of seven paired tumour/blood and 29 tumour samples, we identified frequent mutations in BAP1 and NF2. Additionally, the mutational profile of MPM is enriched with genes encoding FAK, MAPK and WNT signalling pathways.