Interactions Between HIV-1 Vif and Human Elonginb-Elonginc Are Important for CBF-Β Binding To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ankrd9 Is a Metabolically-Controlled Regulator of Impdh2 Abundance and Macro-Assembly
ANKRD9 IS A METABOLICALLY-CONTROLLED REGULATOR OF IMPDH2 ABUNDANCE AND MACRO-ASSEMBLY by Dawn Hayward A dissertation submitted to The Johns Hopkins University in conformity with the requirements of the degree of Doctor of Philosophy Baltimore, Maryland April 2019 ABSTRACT Members of a large family of Ankyrin Repeat Domains proteins (ANKRD) regulate numerous cellular processes by binding and changing properties of specific protein targets. We show that interactions with a target protein and the functional outcomes can be markedly altered by cells’ metabolic state. ANKRD9 facilitates degradation of inosine monophosphate dehydrogenase 2 (IMPDH2), the rate-limiting enzyme in GTP biosynthesis. Under basal conditions ANKRD9 is largely segregated from the cytosolic IMPDH2 by binding to vesicles. Upon nutrient limitation, ANKRD9 loses association with vesicles and assembles with IMPDH2 into rod-like structures, in which IMPDH2 is stable. Inhibition of IMPDH2 with Ribavirin favors ANKRD9 binding to rods. The IMPDH2/ANKRD9 assembly is reversed by guanosine, which restores association of ANKRD9 with vesicles. The conserved Cys109Cys110 motif in ANKRD9 is required for the vesicles-to-rods transition as well as binding and regulation of IMPDH2. ANKRD9 knockdown increases IMPDH2 levels and prevents formation of IMPDH2 rods upon nutrient limitation. Thus, the status of guanosine pools affects the mode of ANKRD9 action towards IMPDH2. Advisor: Dr. Svetlana Lutsenko, Department of Physiology, Johns Hopkins University School of Medicine Second reader: -
An Amplified Fatty Acid-Binding Protein Gene Cluster In
cancers Review An Amplified Fatty Acid-Binding Protein Gene Cluster in Prostate Cancer: Emerging Roles in Lipid Metabolism and Metastasis Rong-Zong Liu and Roseline Godbout * Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-432-8901 Received: 6 November 2020; Accepted: 16 December 2020; Published: 18 December 2020 Simple Summary: Prostate cancer is the second most common cancer in men. In many cases, prostate cancer grows very slowly and remains confined to the prostate. These localized cancers can usually be cured. However, prostate cancer can also metastasize to other organs of the body, which often results in death of the patient. We found that a cluster of genes involved in accumulation and utilization of fats exists in multiple copies and is expressed at much higher levels in metastatic prostate cancer compared to localized disease. These genes, called fatty acid-binding protein (or FABP) genes, individually and collectively, promote properties associated with prostate cancer metastasis. We propose that levels of these FABP genes may serve as an indicator of prostate cancer aggressiveness, and that inhibiting the action of FABP genes may provide a new approach to prevent and/or treat metastatic prostate cancer. Abstract: Treatment for early stage and localized prostate cancer (PCa) is highly effective. Patient survival, however, drops dramatically upon metastasis due to drug resistance and cancer recurrence. The molecular mechanisms underlying PCa metastasis are complex and remain unclear. It is therefore crucial to decipher the key genetic alterations and relevant molecular pathways driving PCa metastatic progression so that predictive biomarkers and precise therapeutic targets can be developed. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
BC-Box Protein Domain-Related Mechanism for VHL Protein Degradation
BC-box protein domain-related mechanism for VHL protein degradation Maria Elena Pozzebona,1,2, Archana Varadaraja,1, Domenico Mattoscioa, Ellis G. Jaffrayb, Claudia Miccoloa, Viviana Galimbertic, Massimo Tommasinod, Ronald T. Hayb, and Susanna Chioccaa,3 aDepartment of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy; cSenology Division, European Institute of Oncology, 20141 Milan, Italy; dInternational Agency for Research on Cancer, World Health Organization, 69372 Lyon, France; and bCentre for Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, United Kingdom Edited by William G. Kaelin, Jr., Harvard Medical School, Boston, MA, and approved September 23, 2013 (received for review June 18, 2013) The tumor suppressor VHL (von Hippel–Lindau) protein is a sub- effects of the wild-type Gam1 protein (18, 20, 21), supporting the strate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), idea that these effects may depend on Gam1 ability to act as containing a BC-box domain that associates to the adaptor Elongin substrate-receptor protein. B/C. VHL targets hypoxia-inducible factor 1α to proteasome- VHL (von Hippel–Lindau) protein is a cellular BC box-con- dependent degradation. Gam1 is an adenoviral protein, which also taining substrate receptor and associates with Cullin2-based E3 possesses a BC-box domain that interacts with the host Elongin B/C, ligases (22–24). VHL is a tumor suppressor, and its loss leads to – thereby acting as a viral substrate receptor. Gam1 associates with the von Hippel Lindau syndrome that often develops into renal both Cullin2 and Cullin5 to form CRL complexes targeting the host clear-cell carcinoma and other highly vascularized tumors (25, 26). -
X Linked Disease in Females
J Med Genet 1993; 30: 177-184 177 ORIGINAL ARTICLES J Med Genet: first published as 10.1136/jmg.30.3.177 on 1 March 1993. Downloaded from X chromosome inactivation and the diagnosis of X linked disease in females R M Brown, G K Brown Abstract larly important in the brain which has an In studies of female patients with sus- obligatory requirement for aerobic glucose ox- pected deficiency of the Elm subunit of idation under normal circumstances. Rela- the pyruvate dehydrogenase complex, we tively modest reduction in PDH activity there- have found that X inactivation ratios of fore has significant consequences, especially 80:20 or greater occur at sufficient fre- for central nervous system function. quency in cultured fibroblasts to make Within the PDH complex, the Ela subunit exclusion of the diagnosis impossible in contains the pyruvate binding site and the about 25% of cases. Pyruvate dehydroge- phosphorylation sites by which the activity of nase Elm subunit deficiency is an X linked the whole complex is controlled.5 The gene for inborn error of metabolism which is well the Elca subunit is located on the short arm of defined biochemically and is unusual in the X chromosome in the region Xp22. 1.6 that most heterozygous females manifest However, in all reported series of patients with the condition. The diagnosis is usually PDH Ela deficiency, there are approximately established by measurement of enzyme equal numbers of males and females.2- The activity and the level of immunoreactive clinical presentation does differ between the protein and these analyses are most com- sexes with the acute metabolic form more monly performed on cultured fibroblasts common from the patients. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Downloaded the “Top Edge” Version
bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects. -
1 Functional Annotation of Human Long Non-Coding Rnas Via Molecular Phenotyping 1 Jordan a Ramilowski , Chi Wai Yip , Saumya
bioRxiv preprint doi: https://doi.org/10.1101/700864; this version posted June 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Functional Annotation of Human Long Non-Coding RNAs via Molecular Phenotyping 2 Jordan A Ramilowski1,2#, Chi Wai Yip1,2#, Saumya Agrawal1,2, Jen-Chien Chang1,2, Yari Ciani3, 3 Ivan V Kulakovskiy4, Mickaël Mendez5, Jasmine Li Ching Ooi2, John F Ouyang6, Nick 4 Parkinson7, Andreas Petri8, Leonie Roos9, Jessica Severin1,2, Kayoko Yasuzawa1,2, Imad 5 Abugessaisa1,2, Altuna Akalin10, Ivan V Antonov11, Erik Arner1,2, Alessandro Bonetti2, 6 Hidemasa Bono12, Beatrice Borsari13, Frank Brombacher14, Chris JF Cameron15, Carlo Vittorio 7 Cannistraci16, Ryan Cardenas17, Melissa Cardon1, Howard Chang18, Josée Dostie19, Luca 8 Ducoli20, Alexander Favorov21, Alexandre Fort2, Diego Garrido13, Noa Gil22, Juliette Gimenez23, 9 Reto Guler14, Lusy Handoko2, Jayson Harshbarger2, Akira Hasegawa1,2, Yuki Hasegawa2, 10 Kosuke Hashimoto1,2, Norihito Hayatsu1, Peter Heutink24, Tetsuro Hirose25, Eddie L Imada26, 11 Masayoshi Itoh2,27, Bogumil Kaczkowski1,2, Aditi Kanhere17, Emily Kawabata2, Hideya 12 Kawaji27, Tsugumi Kawashima1,2, S. Thomas Kelly1, Miki Kojima1,2, Naoto Kondo2, Haruhiko 13 Koseki1, Tsukasa Kouno1,2, Anton Kratz2, Mariola Kurowska-Stolarska28, Andrew Tae Jun 14 Kwon1,2, Jeffrey Leek26, Andreas Lennartsson29, Marina Lizio1,2, Fernando López-Redondo1,2, 15 Joachim Luginbühl1,2, Shiori Maeda1, Vsevolod -
WO 2015/089333 Al 18 June 2015 (18.06.2015) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/089333 Al 18 June 2015 (18.06.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) C40B 30/04 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/069848 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 December 2014 ( 11.12.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/914,907 11 December 201 3 ( 11. 12.2013) US (84) Designated States (unless otherwise indicated, for every 61/987,414 1 May 2014 (01.05.2014) US kind of regional protection available): ARIPO (BW, GH, 62/010,975 11 June 2014 ( 11.06.2014) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: ACCURAGEN, INC. -
Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function. -
Bioinformatics Analysis for the Identification of Differentially Expressed Genes and Related Signaling Pathways in H
Bioinformatics analysis for the identification of differentially expressed genes and related signaling pathways in H. pylori-CagA transfected gastric cancer cells Dingyu Chen*, Chao Li, Yan Zhao, Jianjiang Zhou, Qinrong Wang and Yuan Xie* Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China * These authors contributed equally to this work. ABSTRACT Aim. Helicobacter pylori cytotoxin-associated protein A (CagA) is an important vir- ulence factor known to induce gastric cancer development. However, the cause and the underlying molecular events of CagA induction remain unclear. Here, we applied integrated bioinformatics to identify the key genes involved in the process of CagA- induced gastric epithelial cell inflammation and can ceration to comprehend the potential molecular mechanisms involved. Materials and Methods. AGS cells were transected with pcDNA3.1 and pcDNA3.1::CagA for 24 h. The transfected cells were subjected to transcriptome sequencing to obtain the expressed genes. Differentially expressed genes (DEG) with adjusted P value < 0.05, | logFC |> 2 were screened, and the R package was applied for gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The differential gene protein–protein interaction (PPI) network was constructed using the STRING Cytoscape application, which conducted visual analysis to create the key function networks and identify the key genes. Next, the Submitted 20 August 2020 Kaplan–Meier plotter survival analysis tool was employed to analyze the survival of the Accepted 11 March 2021 key genes derived from the PPI network. Further analysis of the key gene expressions Published 15 April 2021 in gastric cancer and normal tissues were performed based on The Cancer Genome Corresponding author Atlas (TCGA) database and RT-qPCR verification. -
Phosphorylation of a Novel SOCS-Box Regulates Assembly of the HIV-1 Vif–Cul5 Complex That Promotes APOBEC3G Degradation
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION ani et al. 2003; Zhang et al. 2003). Vif is required for Phosphorylation of a novel replication in “nonpermissive” cells, including primary SOCS-box regulates assembly T cells, macrophages, and certain T-cell lines, but is dis- pensable for replication in “permissive” cell lines, such of the HIV-1 Vif–Cul5 as 293T cells (Gabuzda et al. 1992; Rose et al. 2004). complex that promotes APOBEC3G expression is restricted to nonpermissive cells, whereas its expression in permissive cells confers a APOBEC3G degradation nonpermissive phenotype (Sheehy et al. 2002). Vif binds directly to APOBEC3G and targets it for degradation via Andrew Mehle,1,2 Joao Goncalves,4 the ubiquitin–proteasome pathway, thereby preventing Mariana Santa-Marta,4 Mark McPike,1,2 its incorporation into virions and protecting the viral and Dana Gabuzda1,3,5 genome from mutation (Conticello et al. 2003; Marin et al. 2003; Sheehy et al. 2003; Stopak et al. 2003; Yu et al. 1Department of Cancer Immunology and AIDS, Dana Farber 2003; Mehle et al. 2004). Cancer Institute, Boston, Massachusetts 02115, USA; Ubiquitination is a post-translational modification Departments of 2Pathology and 3Neurology, Harvard Medical that controls the activity, localization, and proteasomal School, Boston, Massachusetts 02115, USA; 4URIA-Centro de degradation of many cellular proteins (for review, see Patogénese Molecular, Faculdade de Farmácia, University of Ulrich 2002). The E1 ubiquitin activating enzyme trans- Lisbon, 1649-019 Portugal fers ubiquitin to an E2 ubiquitin conjugating enzyme, which together with an E3 ubiquitin ligase transfers HIV-1 Vif (viral infectivity factor) protein overcomes the ubiquitin to the target protein.