PPN9 Abstracts Revised Colour.Indb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LITHIC ANALYSIS (01-070-391) Rutgers University Spring 2010
SYLLABUS LITHIC ANALYSIS (01-070-391) Rutgers University Spring 2010 Lecture days/hours: Thursday, 2:15-5:15 PM Lecture location: BioSci 206, Douglass Campus Instructors: Dr. J.W.K. Harris J.S. Reti, MA [email protected] [email protected] Office: BioSci, Room 203B Office: BioSci, Room 204C Office Hours: Friday 11:00 – 1:00 Office Hours: Thursday 1:00 – 3:00 COURSE DESCRIPTION: This course is an integrated course that incorporates theoretical, behavioral, and practical aspects of lithic technology. Lithic Analysis is an advanced undergraduate course in human and non-human primate stone technology. Each student is expected to already have taken an introductory course in human evolution, primatology, and/or archaeology. Lithic Analysis is a sub-discipline of archaeology. The focus is on the inferential potential of stone tools with regard to human behavior. Early human ancestors first realized the utility of sharp stone edges for butchery and other practices. Arguably, without the advent of stone tools human evolution would have taken a different path. Stone tools allowed early hominins efficient access to meat resources and provided as avenue for cognitive development and three-dimensional problem solving. This course will provide a three-fold approach to lithic analysis: 1) study of archaeological sites and behavioral change through time relative to lithic technological changes, 2) insight into the art of laboratory lithic analysis and methods employed to attain concrete, quantitative behavioral conclusions, and 3) extensive training in stone tool replication. Such training will provide students with both an appreciation for the skills of our ancestors and with personal skills that will allow for further research into replication and human behavior. -
Hassuna Samarra Halaf
arch 1600. archaeologies of the near east joukowsky institute for archaeology and the ancient world spring 2008 Emerging social complexities in Mesopotamia: the Chalcolithic in the Near East. February 20, 2008 Neolithic in the Near East: early sites of socialization “neolithic revolution”: domestication of wheat, barley, sheep, goat: early settled communities (ca 10,000 to 6000 BC) Mudding the world: Clay, mud and the technologies of everyday life in the prehistoric Near East • Pottery: associated with settled life: storage, serving, prestige pots, decorated and undecorated. • Figurines: objects of everyday, magical and cultic use. Ubiquitous for prehistoric societies especially. In clay and in stone. • Mud-brick as architectural material: Leads to more structured architectural constructions, perhaps more rectilinear spaces. • Tokens, hallow clay balls, tablets and early writing technologies: related to development o trade, tools of urban administration, increasing social complexity. • Architectural models: whose function is not quite obvious to us. Maybe apotropaic, maybe for sale purposes? “All objects of pottery… figments of potter’s will, fictions of his memory and imagination.” J. L. Myres 1923, quoted in Wengrow 1998: 783. What is culture in “culture history” (1920s-1960s) ? Archaeological culture = a bounded and binding ethnic/cultural unit within a defined geography and temporal/spatial “horizons”, uniformly and unambigously represented in the material culture, manifested by artifactual assemblage. pots=people? • “Do cultures actually -
Documenta Praehistorica XLVI
UNIVERSITY OF LJUBLJANA FACULTY OF ARTS DEPARTMENT OF ARCHAEOLOGY DocumentaDocumenta PraehistPraehistoricaorica XLVIXLVI Documenta Praehistorica XLVI EDITOR Mihael Budja ISSN 1408–967X (Print) ISSN 1854–2492 (Online) LJUBLJANA 2019 DOCUMENTA PRAEHISTORICA XLVI (2019) Urednika/Editors: Prof. Dr. Mihael Budja, urednik/editor, [email protected] Bojan Kambič, tehnični urednik/technical editor, [email protected] Uredniški odbor/Editorial board: Maja Andrič, Institute of Archaeology, ZRC SAZU, Ljubljana, Slovenia Mihael Budja, University of Ljubljana, Faculty of Arts, Slovenia Canan Çakirlar, University of Groningen, Faculty of Arts, Netherlands Ekaterina Dolbunova, The State Hermitage Museum, The department of archaeology of Eastern Europe and Siberia, Saint-Petersburg, Russian Federation Ya-Mei Hou, Institute of Vertebrate Paleontology and Paleoanthropolgy, Chinese Academy of Sciences, Beijing, China Dimitrij Mlekuž Vrhovnik, University of Ljubljana, Faculty of Arts, Slovenia; Institute for the protection of the cultural heritage of Slovenia, Ljubljana, Slovenia Simona Petru, University of Ljubljana, Faculty of Arts, Slovenia Žiga Šmit, University of Ljubljana, Faculty of mathematics and physics, Slovenia Katherine Willis, University of Oxford, United Kingdom Andreja Žibrat Gašparič, University of Ljubljana, Faculty of Arts, Slovenia To delo je ponujeno pod licenco Creative Commons Priznanje avtorstva-Deljenje pod enakimi pogoji 4.0 Mednarodna licenca/This work is licensed under a Creative Commons Attribution- ShareAlike 4.0 International License. Založila in izdala/Published by: Znanstvena založba Filozofske fakultete, Univerza v Ljubljani/ Ljubljana University Press, Faculty of Arts ([email protected]; www.ff.uni-lj.si) Za založbo/For the publisher: Prof. Dr. Roman Kuhar, dekan Filozofske fakultete Naslov uredništva/Address of Editorial Board: Oddelek za arheologijo, Filozofska fakulteta, Univerza v Ljubljani, Aškerčeva 2, 1001 Ljubljana, p.p. -
2000 Stainless Steels: an Introduction to Their Metallurgy and Corrosion
Dairy, Food and Environmental Sanitation, Vol. 20, No. 7, Pages 506-517 Copyright© International Association for Food Protection, 6200 Aurora Ave., Suite 200W, Des Moines, IA 50322 Stainless Steels: An Introduction to Their Metallurgy and Corrosion Resistance Roger A. Covert and Arthur H. Tuthill* and why they sometimes do not. In most cases, selection of the proper stainless steel leads to satisfactory performance. COMPOSITION, NOMEN- CLATURE AND GENERAL PROPERTIES Most metals are mixtures of a primary metallic element and one or more intentionally added other ele- This article has been peer-reviewed by two professionals. ments. These mixtures of elements are called alloys. Stainless steels are alloys, as are brasses (copper + zinc), bronzes (copper + tin), the many alu- INTRODUCTION better understanding of stainless minum alloys, and many other me- Worldwide, in industry, in busi- steels, especially to the non-metal- tallic materials. In general, solid ness and in the home, metals called lurgist. metals and alloys consist of randomly stainless steels are used daily. It is Industries are concerned with oriented grains that have a well-de- important to understand what these integrity of equipment and product fined crystalline structure, or lattice, materials are and why they behave purity. To achieve these, stainless within the grains. In stainless steels, the way they do. This is especially steels are often the economical and the crystalline structures within the true because the word “stainless” is practical materials of choice for pro- grains have been given names such as itself somewhat of a misnomer; these cess equipment. However, before ferrite, austenite, martensite, or a materials can stain and can corrode intelligent decisions can be made mixture of two or more of these. -
Late Neolithic Agriculture in Temperate Europe—A Long-Term Experimental Approach
land Article Late Neolithic Agriculture in Temperate Europe—A Long-Term Experimental Approach Manfred Rösch 1,*, Harald Biester 2, Arno Bogenrieder 3, Eileen Eckmeier 4, Otto Ehrmann 5, Renate Gerlach 6, Mathias Hall 7, Christoph Hartkopf-Fröder 8, Ludger Herrmann 9, Birgit Kury 5, Jutta Lechterbeck 10, Wolfram Schier 11 and Erhard Schulz 12 1 Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Fischersteig 9, 78343 Gaienhofen-Hemmenhofen, Germany 2 TU Braunschweig, Abt. Umweltgeochemie, Institut für Geoökologie, Langer Kamp 19c, 38106 Braunschweig, Germany; [email protected] 3 Institut für Biologie/Geobotanik, Universität Freiburg, Schänzlestr. 1, 79104 Freiburg i. Br., Germany; [email protected] 4 Department für Geographie, Ludwig-Maximilians-Universität München, Luisenstraße 37, 80333 Munich, Germany; [email protected] 5 Büro für Bodenmikromorphologie und Bodenbiologie, Münster 12, 97993 Creglingen, Germany; [email protected] (O.E.); [email protected] (B.K.) 6 Geographisches Institut Universität Köln, Albertus-Magnus-Platz, D-50923 Köln, Germany; [email protected] 7 Forstamt Hohenlohekreis, Stuttgarter Str. 21, 74653 Künzelsau, Germany; [email protected] 8 Geologischer Dienst Nordrhein-Westfalen, Postfach 100763, 47707 Krefeld, Germany; [email protected] 9 Institut für Bodenkunde und Standortslehre, Universität Hohenheim, Emil-Wolff-Str. 27, 70593 Stuttgart, Germany; [email protected] 10 Arkeologisk Museum i Stavanger, Peder Klows gate 30A, 4010 Stavanger, Norway; [email protected] 11 Institut für prähistorische Archäologie, Freie Universität Berlin, Fabeckstr. 23-25, 14195 Berlin, Germany; [email protected] 12 Institut für Geographie und Geologie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-7735-93777-154 Academic Editors: Erle C. -
Organic Residue Analysis and the Earliest Uses of Pottery in the Ancient Middle East
ORGANIC RESIDUE ANALYSIS AND THE EARLIEST USES OF POTTERY IN THE ANCIENT MIDDLE EAST by Michael William Gregg A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Anthropology University of Toronto © Copyright by Michael William Gregg 2009 Library and Archives Bibliothèque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de l’édition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre référence ISBN: 978-0-494-60970-5 Our file Notre référence ISBN: 978-0-494-60970-5 NOTICE: AVIS: The author has granted a non- L’auteur a accordé une licence non exclusive exclusive license allowing Library and permettant à la Bibliothèque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par télécommunication ou par l’Internet, prêter, telecommunication or on the Internet, distribuer et vendre des thèses partout dans le loan, distribute and sell theses monde, à des fins commerciales ou autres, sur worldwide, for commercial or non- support microforme, papier, électronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L’auteur conserve la propriété du droit d’auteur ownership and moral rights in this et des droits moraux qui protège cette thèse. Ni thesis. Neither the thesis nor la thèse ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent être imprimés ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Palaeoenvironment and Dating of the Early Acheulean
Quaternary Science Reviews 149 (2016) 338e371 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Palaeoenvironment and dating of the Early Acheulean localities from the Somme River basin (Northern France): New discoveries from the High Terrace at Abbeville-Carriere Carpentier * Pierre Antoine a, Marie-Hel ene Moncel b, , Nicole Limondin-Lozouet a, Jean-Luc Locht c, d, Jean-Jacques Bahain b, Davinia Moreno e, Pierre Voinchet b, Patrick Auguste f, Emmanuelle Stoetzel g, Julie Dabkowski a, Silvia M. Bello h, Simon A. Parfitt h, i, Olivier Tombret a, Bruce Hardy j a Laboratoire de Geographie Physique, Environnements Quaternaires et Actuels, UMR 8591 CNRS-Univ, Paris 1-UPEC, 1 Pl. A. Briand, 92 195 Meudon, France b UMR 7194 CNRS Histoire Naturelle de l'Homme Prehistorique Departement de Prehistoire, Museum National d'Histoire Naturelle, Sorbonne Universites, 1 Rue R. Panhard, 75 013 Paris, France c INRAP, Nord-Picardie, 518, Rue Saint-Fuscien, 80 000 Amiens, France d UMR CNRS UMR 8591 CNRS-Univ, Paris 1-UPEC, 1 Pl. A. Briand, 92 195 Meudon, Meudon, France e Centro Nacional de Investigacion sobre la Evolucion Humana (CENIEH), Paseo Sierra de Atapuerca, 3, 09001 Burgos, Spain f UMR 8198 Evo-Eco-Paleo, CNRS, Universite de Lille, Sciences et Technologies, Batiment^ SN 5, 59655 Villeneuve d'Ascq Cedex, France g Histoire Naturelle de l'Homme Prehistorique (HNHP, UMR 7194), Sorbonne Universites, Museum National d'Histoire Naturelle, Departement de Prehistoire, CNRS, Musee de l'Homme, -
Ch. 4. NEOLITHIC PERIOD in JORDAN 25 4.1
Borsa di studio finanziata da: Ministero degli Affari Esteri di Italia Thanks all …………. I will be glad to give my theses with all my love to my father and mother, all my brothers for their helps since I came to Italy until I got this degree. I am glad because I am one of Dr. Ursula Thun Hohenstein students. I would like to thanks her to her help and support during my research. I would like to thanks Dr.. Maysoon AlNahar and the Museum of the University of Jordan stuff for their help during my work in Jordan. I would like to thank all of Prof. Perreto Carlo and Prof. Benedetto Sala, Dr. Arzarello Marta and all my professors in the University of Ferrara for their support and help during my Phd Research. During my study in Italy I met a lot of friends and specially my colleges in the University of Ferrara. I would like to thanks all for their help and support during these years. Finally I would like to thanks the Minister of Fournier of Italy, Embassy of Italy in Jordan and the University of Ferrara institute for higher studies (IUSS) to fund my PhD research. CONTENTS Ch. 1. INTRODUCTION 1 Ch. 2. AIMS OF THE RESEARCH 3 Ch. 3. NEOLITHIC PERIOD IN NEAR EAST 5 3.1. Pre-Pottery Neolithic A (PPNA) in Near east 5 3.2. Pre-pottery Neolithic B (PPNB) in Near east 10 3.2.A. Early PPNB 10 3.2.B. Middle PPNB 13 3.2.C. Late PPNB 15 3.3. -
Flint Recycling in the Neolithic and Early Bronze Age: Evidence for Small Flakes Production by Means of Recycling at Ein-Zippori, Israel Yoni Parush 1,2, Richard W
Flint recycling in the Neolithic and Early Bronze Age: Evidence for small flakes production by means of recycling at Ein-Zippori, Israel Yoni Parush 1,2, Richard W. Yerkes 3, Bar Efrati 1,2, Ran Barkai 1,2, Avi Gopher 1,2 1. The Sonia and Marco Nadler Institute of Archaeology, Tel-Aviv University, POB 39040, 69978 Tel-Aviv, Israel. Email: Parush: [email protected]; Gopher: [email protected]; Barkai: [email protected]; Efrati: [email protected] 2. Department of Archaeology and Ancient Near East Cultures, Tel-Aviv University, POB 39040, 69978 Tel- Aviv, Israel. 3. Department of Anthropology, The Ohio State University, U.S.A. Email: Yerkes: [email protected] Abstract: This paper presents a new techno-typological analysis of a sample of small flakes that were produced through recycling from discarded blanks at the late Pottery Neolithic and Early Bronze Age site of Ein-Zippori, Lower Galilee, Israel. This study shows that the systematic production of small flakes from previously discarded blanks was not related to a scarcity in raw materials, but rather to specific decisions concerning the types of tools needed to carry out necessary tasks. These results are supported by use-wear analysis briefly noted on here and presented in more detail in a separate paper. The results further indicate the importance of reconstructing the life history of recycled items and its influence on the composition and variability of the lithic assemblages. The results indicate that recycling was a significant lithic production trajectory during the late Pottery Neolithic and in the Early Bronze Age. -
British Neolithic Axehead Distributions and Their Implications
Journal of Archaeological Method and Theory https://doi.org/10.1007/s10816-019-09438-6 British Neolithic Axehead Distributions and Their Implications Peter Schauer 1 & Andrew Bevan1 & Stephen Shennan1 & Kevan Edinborough2 & Tim Kerig 3 & Mike Parker Pearson1 # The Author(s) 2019, corrected publication 2020 Abstract Neolithic stone axeheads from Britain provide an unusually rich, well-provenanced set of evidence with which to consider patterns of prehistoric production and exchange. It is no surprise then that these objects have often been subject to spatial analysis in terms of the relationship between particular stone source areas and the distribution of axeheads made from those stones. At stake in such analysis are important interpretative issues to do with how we view the role of material value, supply, exchange, and demand in prehistoric societies. This paper returns to some of these well-established debates in the light of accumulating British Neolithic evidence and via the greater analytical power and flexibility afforded by recent computational methods. Our anal- yses make a case that spatial distributions of prehistoric axeheads cannot be explained merely as the result of uneven resource availability in the landscape, but instead reflect the active favouring of particular sources over known alternatives. Above and beyond these patterns, we also demonstrate that more populated parts of Early Neolithic Britain were an increased pull factor affecting the longer-range distribution of these objects. Keywords Neolithic . Britain . Radiocarbon . Stone axeheads . Spatial analysis . Cluster analysis Introduction Prehistoric edge-ground stone tools are a key form of human material culture, found across a vast range of cultural settings and interpreted with more or less regard to their potential roles as socially charged emblems, proto-currencies, and/or functional tools. -
The Earliest Evidence of Acheulian Occupation in Northwest
www.nature.com/scientificreports OPEN The earliest evidence of Acheulian occupation in Northwest Europe and the rediscovery of the Moulin Received: 5 December 2017 Accepted: 19 August 2019 Quignon site, Somme valley, France Published: xx xx xxxx Pierre Antoine1, Marie-Hélène Moncel2, Pierre Voinchet2, Jean-Luc Locht1,3, Daniel Amselem2, David Hérisson 4, Arnaud Hurel2 & Jean-Jacques Bahain2 The dispersal of hominin groups with an Acheulian technology and associated bifacial tools into northern latitudes is central to the debate over the timing of the oldest human occupation of Europe. New evidence resulting from the rediscovery and the dating of the historic site of Moulin Quignon demonstrates that the frst Acheulian occupation north of 50°N occurred around 670–650 ka ago. The new archaeological assemblage was discovered in a sequence of fuvial sands and gravels overlying the chalk bedrock at a relative height of 40 m above the present-day maximal incision of the Somme River and dated by ESR on quartz to early MIS 16. More than 260 fint artefacts were recovered, including large fakes, cores and fve bifaces. This discovery pushes back the age of the oldest Acheulian occupation of north-western Europe by more than 100 ka and bridges the gap between the archaeological records of northern France and England. It also challenges hominin dispersal models in Europe showing that hominins using bifacial technology, such as Homo heidelbergensis, were probably able to overcome cold climate conditions as early as 670–650 ka ago and reasserts the importance of the Somme valley, where Prehistory was born at the end of the 19th century. -
First Wave of Cultivators Spread to Cyprus at Least 10,600 Y Ago
First wave of cultivators spread to Cyprus at least 10,600 y ago Jean-Denis Vignea,1, François Brioisb, Antoine Zazzoa, George Willcoxc, Thomas Cucchia,d, Stéphanie Thiébaulta, Isabelle Carrèreb, Yodrik Franele, Régis Touquete, Chloé Martina, Christophe Moreauf, Clothilde Combyf, and Jean Guilaineb aUnité Mixte de Recherche (UMR) 7209, Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, Centre National de la Recherche Scientifique, Muséum National d’Histoire Naturelle, CP 56, F-75005 Paris, France; bUMR 5608, Travaux et Recherches Archéologiques sur les Cultures, les Espaces et les Sociétés (TRACES), Centre de Recherches sur la Préhistoire et la Protohistoire de la Méditerranée, Ecole des Hautes Etudes en Sciences Sociales, Université Toulouse Le Mirail, Centre National de la Recherche Scientifique, F-31000 Toulouse, France; cUMR 5133, Environnement et Sociétés de l’Orient Ancien, Archéorient, Centre National de la Recherche Scientifique, Université Lumière Lyon 2, F-69365 Lyon, France; dDepartment of Archaeology, Aberdeen University, Aberdeen AB24 3UF, United Kingdom; eCentre-Île-de-France, Institut National de Recherches Archéologiques Préventives (INRAP), F-75008 Paris, France; and fUnité Mixte de Service (UMS) 2572, Laboratoire de Mesure du Carbone 14, Commissariat à l’Energie Atomique et aux Energies Alternatives Saclay, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut de Radioprotection et de Sûreté Nucléaire, Ministère de la Culture et de la Communication, F-91191 Gif-sur-Yvette, France Edited* by Ofer Bar-Yosef, Harvard University, Cambridge, MA, and approved April 6, 2012 (received for review February 1, 2012) Early Neolithic sedentary villagers started cultivating wild cereals in villagers several centuries earlier than suspected, a phenomenon the Near East 11,500 y ago [Pre-Pottery Neolithic A (PPNA)].