Thread Drifting by Juvenile Bivalves in the Coos Bay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mapping and Distribution of Sabella Spallanzanii in Port Phillip Bay Final
Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G..D. Parry, M.M. Lockett, D.P. Crookes, N. Coleman and M.A. Sinclair May 1996 Mapping and distribution of Sabellaspallanzanii in Port Phillip Bay Final Report to Fisheries Research and Development Corporation (FRDC Project 94/164) G.D. Parry1, M. Lockett1, D. P. Crookes1, N. Coleman1 and M. Sinclair2 May 1996 1Victorian Fisheries Research Institute Departmentof Conservation and Natural Resources PO Box 114, Queenscliff,Victoria 3225 2Departmentof Ecology and Evolutionary Biology Monash University Clayton Victoria 3068 Contents Page Technical and non-technical summary 2 Introduction 3 Background 3 Need 4 Objectives 4 Methods 5 Results 5 Benefits 5 Intellectual Property 6 Further Development 6 Staff 6 Final cost 7 Distribution 7 Acknow ledgments 8 References 8 Technical and Non-technical Summary • The sabellid polychaete Sabella spallanzanii, a native to the Mediterranean, established in Port Phillip Bay in the late 1980s. Initially it was found only in Corio Bay, but during the past fiveyears it has spread so that it now occurs throughout the western half of Port Phillip Bay. • Densities of Sabella in many parts of the bay remain low but densities are usually higher (up to 13/m2 ) in deeper water and they extend into shallower depths in calmer regions. • Sabella larvae probably require a 'hard' surface (shell fragment, rock, seaweed, mollusc or sea squirt) for initial attachment, but subsequently they may use their own tube as an anchor in soft sediment . • Changes to fish communities following the establishment of Sabella were analysed using multidimensional scaling and BACI (Before, After, Control, Impact) design analyses of variance. -
The Role of Turbulence in Broadcast Spawning and Larval
THE ROLE OF TURBULENCE IN BROADCAST SPAWNING AND LARVAL SETTLEMENT IN FRESHWATER DREISSENID MUSSELS A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by NOEL PETER QUINN In partial fulfilment of requirements for the degree of Doctor of Philosophy December, 2009 © Noel P. Quinn, 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de ('edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 OttawaONK1A0N4 Canada Canada Your file Voire reference ISBN: 978-0-494-58276-3 Our file Notre reference ISBN: 978-0-494-58276-3 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. -
Population Dynamics of the Freshwater Clam Galatea Paradoxa from the Volta River, Ghana
Knowledge and Management of Aquatic Ecosystems (2012) 405, 09 http://www.kmae-journal.org c ONEMA, 2012 DOI: 10.1051/kmae/2012017 Population dynamics of the freshwater clam Galatea paradoxa from the Volta River, Ghana D. Adjei-Boateng(1),,J.G.Wilson(2) Received February 6, 2012 Revised April 25, 2012 Accepted May 7, 2012 ABSTRACT Key-words: Population parameters such as asymptotic (L∞), growth coefficient (K), recruitment, mortality rates (Z, F and M), exploitation level (E) and recruitment pattern mortality, of the freshwater clam Galatea paradoxa were estimated using length- growth frequency data from the Volta River estuary, Ghana. The L∞ for G. para- parameters, doxa at the Volta estuary was 105.7 mm, the growth coefficient (K)and Volta River, the growth performance index (Ø)´ ranged between 0.14–0.18 year−1 and Bivalvia 3.108–3.192, respectively. Total mortality (Z) was 0.65–0.82 year−1, while natural mortality (M) and fishing mortality (F) were 0.35–0.44 year−1 and 0.21–0.47 year−1, respectively, with an exploitation level of 0.32–0.57. The recruitment pattern suggested that G. paradoxa has year-round recruit- ment with a single pulse over an extended period (October–March) in the Volta River. The Volta River stock of G. paradoxa is overfished and requires immediate action to conserve it. This can be achieved by implementing a minimum landing size restriction and intensifying the culture of smaller clams which is a traditional activity at the estuary. RÉSUMÉ La dynamique des populations de palourdes d’eau douce Galatea paradoxa de la rivière Volta, Ghana Mots-clés : Les paramètres de population tels que (L∞) asymptotique, le coefficient de crois- recrutement, sance (K), les taux de mortalité (Z, F et M), le niveau d’exploitation (E)etlemodèle mortalité, de recrutement des palourdes d’eau douce Galatea paradoxa ont été estimés à paramètres l’aide des données de fréquences de longueur dans l’estuaire du fleuve Volta, au ∞ de croissance, Ghana. -
Physiological Adaptations and Feeding Mechanisms of the Invasive Purple Varnish Clam, Nuttallia Obscurata
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2013 Physiological adaptations and feeding mechanisms of the invasive purple varnish clam, Nuttallia obscurata Leesa E. Sorber Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Biology Commons Recommended Citation Sorber, Leesa E., "Physiological adaptations and feeding mechanisms of the invasive purple varnish clam, Nuttallia obscurata" (2013). WWU Graduate School Collection. 281. https://cedar.wwu.edu/wwuet/281 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. PHYSIOLOGICAL ADAPTATIONS AND FEEDING MECHANISMS OF THE INVASIVE PURPLE VARNISH CLAM, NUTTALLIA OBSCURATA by Leesa E. Sorber Accepted in Partial Completion of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Deborah Donovan Dr. Benjamin Miner Dr. Jose Serrano-Moreno MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permission for the owner of any third party copyrighted material included in these files. -
Category Popular Name of the Group Phylum Class Invertebrate
Category Popular name of the group Phylum Class Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate Reptile Chordata Reptilia Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Fish Chordata Actinopterygii Vertebrate Reptile Chordata Reptilia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Mollusk Mollusca Bivalvia Vertebrate Amphibian Chordata Amphibia Invertebrate Arthropod Arthropoda Insecta Vertebrate Fish Chordata Actinopterygii Invertebrate Mollusk Mollusca Bivalvia Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Invertebrate Arthropod Arthropoda Insecta Vertebrate -
The Mode of Life in the Genus Pholadomya As Inferred from the Fossil Record
geosciences Article The Mode of Life in the Genus Pholadomya as Inferred from the Fossil Record Przemysław Sztajner Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16A, 70-383 Szczecin, Poland; [email protected] Received: 13 July 2020; Accepted: 21 September 2020; Published: 5 October 2020 Abstract: The paper is an attempt to reconstruct the mode of life of Pholadomya bivalves, very common in the fossil record, particularly that of the Jurassic. The only extant representative of the genus is extremely rare and very poorly known. Materials from the Polish Jurassic deposits (Bajocian–Kimmeridgian; Western Pomerania and Polish Jura) and literature data were used for the reconstruction. Specifically, observations on the anatomy, taphonomy, and diagenesis of the specimens examined as well as lithology of the deposits housing the specimens were used. Shell anatomy characteristics are known for their particular utility in mode of life reconstructions, although the extremely thin-shelled and coarsely sculpted bivalves, such as the Pholadomya examined, have not been studied so far. The reconstruction suggest a diversity of the mode of life, coincident with the morphological differences between the Pholadomya species. At least the adults of anteriorly flattened species are inferred to have lived extremely deeply buried in the sediment, and were hardly mobile. The smaller, more oval in shape, species were more mobile, and some of them are thought to have preferred life in shelters, should those be available. In addition, the function of the cruciform muscle, other than that considered so far, is suggested. Keywords: Pholadomya; Anomalodesmata; Bivalvia; life habit; deep burrowers; taphonomy; shell anatomy; cruciform muscle; Jurassic; Poland 1. -
Quantifying the Role of Microphytobenthos in Temperate Intertidal Ecosystems Using Optical Remote Sensing Dr. Tisja Daggers
QUANTIFYING THE ROLE OF MICROPHYTOBENTHOS IN TEMPERATE INTERTIDAL ECOSYSTEMS USING OPTICAL REMOTE SENSING Tisja Daggers This dissertation has been approved by: Supervisors prof. dr. D. van der Wal prof. dr. P.M.J. Herman Cover design: Job Duim and Tisja Daggers (painting) Printed by: ITC Printing Department Lay-out: Tisja Daggers ISBN: 978-90-365-5124-3 DOI: 10.3990/1.9789036551243 This research was carried out at NIOZ Royal Netherlands Institute for Sea Research and financially supported by the ‘User Support Programme Space Research’ of the Netherlands Organisation for Scientific Research. © 2021 Tisja Dorine Daggers/ NIOZ, The Netherlands. All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system or transmitted in any form or by any means without permission of the author. Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd, in enige vorm of op enige wijze, zonder voorafgaande schriftelijke toestemming van de auteur. QUANTIFYING THE ROLE OF MICROPHYTOBENTHOS IN TEMPERATE INTERTIDAL ECOSYSTEMS USING OPTICAL REMOTE SENSING DISSERTATION to obtain the degree of doctor at the Universiteit Twente, on the authority of the rector magnificus, prof. dr. ir. A. Veldkamp, on account of the decision of the Doctorate Board to be publicly defended on Thursday 25 February 2021 at 14.45 hours by Tisja Dorine Daggers born on the 13th of June, 1990 in Leersum, The Netherlands iii Graduation Committee: Chair / secretary: prof.dr. F.D. van der Meer Supervisors: prof.dr. D. van der Wal prof.dr. P.M.J. Herman Committee Members: prof. dr. ir. A. Stein dr. ir. -
Of Mitochondria: Investigating the Functioning, Maintenance and Evolutionary Relevance of a Naturally Heteroplasmic System
Université de Montréal Energy metabolism in species with Doubly Uniparental Inheritance (DUI) of mitochondria: investigating the functioning, maintenance and evolutionary relevance of a naturally heteroplasmic system Par Stefano Bettinazzi Département de sciences biologiques, Faculté des arts et des sciences Thèse présentée en vue de l’obtention du grade de Philosophiae Doctor (Ph.D.) en sciences biologiques June 2020 © Stefano Bettinazzi, 2020 A été évaluée par un jury composé des personnes suivantes Sandra Binning Président-rapporteur Sophie Breton Directeur de recherche Pierre Blier Codirecteur Annie Anger Membre du jury Ron Burton Examinateur externe RÉSUMÉ Les mitochondries et leur génome, l'ADN mitochondrial (ADNmt), sont généralement transmis uniquement par la mère aux fils et aux filles chez les métazoaires (transmission strictement maternelle, SMI). Une exception à la règle générale de la SMI se trouve dans environ 100 espèces de bivalves, qui se caractérise par une double transmission uniparentale (DUI) des mitochondries. Chez les espèces DUI, deux lignées d'ADNmt très divergentes et liées au sexe coexistent. Une lignée mitochondriale maternelle (type F), présente dans les ovocytes et les tissus somatiques des individus femelles et males, et une lignée paternelle (type M), présente dans les spermatozoïdes. Dans les tissus somatiques mâles, les deux lignées coexistent parfois, une condition appelée hétéroplasmie. En sachant que les variations génétiques dans l’ADNmt peuvent avoir un impact sur les fonctions mitochondriales, et en donnant l'association stricte des ADNmt de type M et F avec différents gamètes, il est imaginable que la forte divergence entre les deux lignées DUI puisse entraîner des adaptations bioénergétiques avec répercussion sur la reproduction. -
Molluscs: Bivalvia Laura A
I Molluscs: Bivalvia Laura A. Brink The bivalves (also known as lamellibranchs or pelecypods) include such groups as the clams, mussels, scallops, and oysters. The class Bivalvia is one of the largest groups of invertebrates on the Pacific Northwest coast, with well over 150 species encompassing nine orders and 42 families (Table 1).Despite the fact that this class of mollusc is well represented in the Pacific Northwest, the larvae of only a few species have been identified and described in the scientific literature. The larvae of only 15 of the more common bivalves are described in this chapter. Six of these are introductions from the East Coast. There has been quite a bit of work aimed at rearing West Coast bivalve larvae in the lab, but this has lead to few larval descriptions. Reproduction and Development Most marine bivalves, like many marine invertebrates, are broadcast spawners (e.g., Crassostrea gigas, Macoma balthica, and Mya arenaria,); the males expel sperm into the seawater while females expel their eggs (Fig. 1).Fertilization of an egg by a sperm occurs within the water column. In some species, fertilization occurs within the female, with the zygotes then text continues on page 134 Fig. I. Generalized life cycle of marine bivalves (not to scale). 130 Identification Guide to Larval Marine Invertebrates ofthe Pacific Northwest Table 1. Species in the class Bivalvia from the Pacific Northwest (local species list from Kozloff, 1996). Species in bold indicate larvae described in this chapter. Order, Family Species Life References for Larval Descriptions History1 Nuculoida Nuculidae Nucula tenuis Acila castrensis FSP Strathmann, 1987; Zardus and Morse, 1998 Nuculanidae Nuculana harnata Nuculana rninuta Nuculana cellutita Yoldiidae Yoldia arnygdalea Yoldia scissurata Yoldia thraciaeforrnis Hutchings and Haedrich, 1984 Yoldia rnyalis Solemyoida Solemyidae Solemya reidi FSP Gustafson and Reid. -