Abernethy Lowland 195 Abitibi Lowlands 518 Abitibi Upland 215
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Procurement Activity Report 2016-2017
GOVERNMENT OF NUNAVUT Procurement Activity Repor t kNo1i Z?m4fiP9lre pWap5ryeCd6 t b4fy 5 Nunalingni Kavamatkunnilu Pivikhaqautikkut Department of Community and Government Services Ministère des Services communautaires et gouvernementaux Fiscal Year 2016/17 GOVERNMENT OF NUNAVUT Procurement Activity Report Table of Contents Purpose . 3 Objective . 3 Introduction . 3 Report Overview . 4 Sole Source Contract Observations . 5 General Observations . 9 Summary . 11 1. All Contracts (> $5,000) . 11 2. Contracting Types . 15 3. Contracting Methods . 18 4. Sole Source Contract Distribution . 22 Appendices Appendix A: Glossary and Definition of Terms . 27 Appendix B: Sole Source (> $5,000) . 29 Appendix C: Contract Detailed Listing (> $5,000) . 31 1 GOVERNMENT OF NUNAVUT Procurement Activity Report Purpose The Department of Community and Government Services (CGS) is pleased to present this report on the Government of Nunavut (GN's) procurement and contracting activities for the 2016/17 fiscal year. Objective CGS is committed to ensuring fair value and ethical practices in meeting its responsibilities. This is accomplished through effective policies and procedures aimed at: • Obtaining the best value for Nunavummiut overall; • Creating a fair and open environment for vendors; • Maintaining current and accurate information; and • Ensuring effective approaches to meet the GN's requirements. Introduction The Procurement Activity Report presents statistical information and contract detail about GN contracts as reported by GN departments to CGS's Procurement, Logistics and Contract Support section. Contracts entered into by the GN Crown agencies and the Legislative Assembly are not reported to CGS and are not included in this report. Contract information provided in this report reflects contracts awarded and reported during the 2016/2017 fiscal year. -
The Rock Abrasion Record at Gale Crater: Mars Science Laboratory
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE The rock abrasion record at Gale Crater: Mars 10.1002/2013JE004579 Science Laboratory results from Bradbury Special Section: Landing to Rocknest Results from the first 360 Sols of the Mars Science Laboratory N. T. Bridges1, F. J. Calef2, B. Hallet3, K. E. Herkenhoff4, N. L. Lanza5, S. Le Mouélic6, C. E. Newman7, Mission: Bradbury Landing D. L. Blaney2,M.A.dePablo8,G.A.Kocurek9, Y. Langevin10,K.W.Lewis11, N. Mangold6, through Yellowknife Bay S. Maurice12, P.-Y. Meslin12,P.Pinet12,N.O.Renno13,M.S.Rice14, M. E. Richardson7,V.Sautter15, R. S. Sletten3,R.C.Wiens6, and R. A. Yingst16 Key Points: • Ventifacts in Gale Crater 1Applied Physics Laboratory, Laurel, Maryland, USA, 2Jet Propulsion Laboratory, Pasadena, California, USA, 3Department • Maybeformedbypaleowind of Earth and Space Sciences, College of the Environments, University of Washington, Seattle, Washington, USA, 4U.S. • Can see abrasion textures at range 5 6 of scales Geological Survey, Flagstaff, Arizona, USA, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, LPGNantes, UMR 6112, CNRS/Université de Nantes, Nantes, France, 7Ashima Research, Pasadena, California, USA, 8Universidad de Alcala, Madrid, Spain, 9Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Supporting Information: Austin, Texas, USA, 10Institute d’Astrophysique Spatiale, Université Paris-Sud, Orsay, France, 11Department of • Figure S1 12 fi • Figure S2 Geosciences, Princeton University, Princeton, New Jersey, USA, Centre National de la Recherche Scienti que, Institut 13 • Table S1 de Recherche en Astrophysique et Planétologie, CNRS-Université Toulouse, Toulouse, France, Department of Atmospheric, Oceanic, and Space Science; College of Engineering, University of Michigan, Ann Arbor, Michigan, USA, Correspondence to: 14Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 15Lab N. -
Chemical Variations in Yellowknife Bay Formation Sedimentary Rocks
PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Chemical variations in Yellowknife Bay formation 10.1002/2014JE004681 sedimentary rocks analyzed by ChemCam Special Section: on board the Curiosity rover on Mars Results from the first 360 Sols of the Mars Science Laboratory N. Mangold1, O. Forni2, G. Dromart3, K. Stack4, R. C. Wiens5, O. Gasnault2, D. Y. Sumner6, M. Nachon1, Mission: Bradbury Landing P.-Y. Meslin2, R. B. Anderson7, B. Barraclough4, J. F. Bell III8, G. Berger2, D. L. Blaney9, J. C. Bridges10, through Yellowknife Bay F. Calef9, B. Clark11, S. M. Clegg5, A. Cousin5, L. Edgar8, K. Edgett12, B. Ehlmann4, C. Fabre13, M. Fisk14, J. Grotzinger4, S. Gupta15, K. E. Herkenhoff7, J. Hurowitz16, J. R. Johnson17, L. C. Kah18, N. Lanza19, Key Points: 2 1 20 21 12 16 2 • J. Lasue , S. Le Mouélic , R. Léveillé , E. Lewin , M. Malin , S. McLennan , S. Maurice , Fluvial sandstones analyzed by 22 22 23 19 19 24 25 ChemCam display subtle chemical N. Melikechi , A. Mezzacappa , R. Milliken , H. Newsom , A. Ollila , S. K. Rowland , V. Sautter , variations M. Schmidt26, S. Schröder2,C.d’Uston2, D. Vaniman27, and R. Williams27 • Combined analysis of chemistry and texture highlights the role of 1Laboratoire de Planétologie et Géodynamique de Nantes, CNRS, Université de Nantes, Nantes, France, 2Institut de Recherche diagenesis en Astrophysique et Planétologie, CNRS/Université de Toulouse, UPS-OMP, Toulouse, France, 3Laboratoire de Géologie de • Distinct chemistry in upper layers 4 5 suggests distinct setting and/or Lyon, Université de Lyon, Lyon, France, California Institute of Technology, Pasadena, California, USA, Los Alamos National 6 source Laboratory, Los Alamos, New Mexico, USA, Earth and Planetary Sciences, University of California, Davis, California, USA, 7Astrogeology Science Center, U.S. -
Micmac Migration to Western Newfoundland
MICMAC MIGRATION TO WESTERN NEWFOUNDLAND DENNIS A. BARTELS Department of Anthropology Sir Wilfred Grenfell College Memorial University of Newfoundland Corner Brook, Newfoundland Canada, and OLAF UWE JANZEN Department of History Sir Wilfred Grenfell College Memorial University of Newfoundland Corner Brook, Newfoundland Canada, ABSTRACT / RESUME The Micmac of Cape Breton are known to have had a long history of seasonal contact with Newfoundland. It is generally accepted that they resided there permanently by the early 19th century. The authors review the available evidence and conclude that the permanent occupation of Newfoundland by the Micmac began in the 1760s. On sait que les Micmac de cap-Breton ont eu une longue histoire du contact saisonnier avec la Terre-Neuve. Il est généralement admis qu'ils y habitèrent en permanence au début du XIXe siècle. Les auteurs examinent l'évidence disponible et concluent que l'occupation permanente de la Terre-Neuve par les Micmac a commencé dans les années 1760. 72 Dennis A. Bartel/Olaf Uwe Janzen INTRODUCTION It is generally conceded that the Micmac of Cape Breton Island were a maritime-adapted people with sufficient seafaring skills to extend their territorial range as far into the Gulf of St. Lawrence as the Magdalen Islands and as far east as St. Pierre and Miquelon.1 By the eighteenth century, the Micmac were able to maintain a persistent presence in southern and southwestern Newfoundland. Some scholars have concluded from this that southwestern Newfoundland could have been a regular part of the territorial range of the Cape Breton Micmac since prehistoric times.2 In the absence of archaeological evidence to support such a conclusion, others, such as Marshall (1988) and Upton (1979:64) are unwilling to concede more than a seasonal exploitation of Newfoundland. -
Atlantic Salmon Chaleur Bay SFA 15
Fisheries Pêches and Oceans et Océans DFO Science Maritimes Region Stock Status Report D3-01 Atlantic Salmon Chaleur Bay SFA 15 Background Salmon Fishing Area (SFA) 15 includes northern New Brunswick; major rivers are the Restigouche, Nepisiguit and Jacquet. Juvenile salmon generally remain in fresh water for two to three years. Adult stages consist of small salmon (fork length <63 cm) and large salmon (fork length ≥ 63 cm). Most small salmon spend one year at sea before returning to spawn. Most large The Fishery salmon returning to the Nepisiguit River have spent two years at sea. The Aboriginal and recreational fisheries took Restigouche River stock has components of place in all three rivers. Four First Nations both two- and three-sea-winter fish. Most and members of the New Brunswick large salmon are female. Small salmon in Aboriginal Peoples Council (NBAPC) fished the Restigouche River are >98% male The in 1996 under agreements with DFO (in Restigouche stock is early-run, with most N.B.) or with the Quebec Ministère de returns in June and July. Most other rivers l’Environnement et de la Faune. Gillnets, of SFA 15 have a later run, primarily in trapnets and angling gear were used. September-October. The early run has been enhanced through stocking in the Recreational angling in New Brunswick Nepisiguit River. (including provincial boundary waters of the Restigouche River) was regulated by Conservation requirements for each river seasonal and daily limits of eight and two are based on 2.4 eggs/m2 of river habitat. small salmon, respectively, with no retention The objective is to obtain this egg deposition of large salmon. -
N National Museum of Natural History June 2002 Number 10
ewsletterewsletter Smithsonian Institution NN National Museum of Natural History June 2002www.mnh.si.edu/arctic Number 10 NOTES FROM THE DIRECTOR for the University of Maryland. Irwin Shapiro, Director of By Bill Fitzhugh the Smithsonian Astrophysical Observatory, has been named Interim Under Secretary; and Douglas Erwin has been named In thirty two years at the Smithsonian, I have never Interim Director of NMNH while the search for a permanent experienced a year quite like the last one. In the past, the person for both positions continues. Yours Truly has become Smithsonian seemed immune from worldly upheavals, and Chair of Anthropology (a post I held from 1975-80). By this sailed steadily forward even in troubled times. During these time next year the Science Commission Report will have been years, the Institution changed physically and intellectually, on the table for six months, and I hope to report new directions increased the social and ethnic diversity of its staff and and improved prospects for Smithsonian science. programming, and began to diversify its funding stream; but the basic commitment to scholarship and research remained solid. *** Today, this foundation is being challenged as never before. The result has been an unusual year, to say the least. A Despite difficult times, the ASC has maintained its core stream of directors—seven or eight at last count—have left programs and has initiated new projects. At long last, Igor their posts; a special commission has investigated American Krupnik and I, with assistance from Elisabeth Ward, History’s exhibition program; a congressional science succeeded in realizing the dream of a dedicated ASC monograph commission is evaluating Smithsonian science; and two series. -
Statutory Report on Wildlife to the Nunavut Legislative Assembly Section 176 of the Wildlife Act
Statutory Report on Wildlife to the Nunavut Legislative Assembly Section 176 of the Wildlife Act 1.0 Review of Wildlife and Habitat Management Programs for Terrestrial Species in Nunavut…………………………………………………………….1 1.1 Wildlife Act and Wildlife Regulations………………………………………………..2 1.2 Qikiqtaaluk Region……………………………………………………………………2 1.2.1 Qikiqtaaluk Research Initiatives…………………………………………………….2 a. Peary caribou………………………………………………………………………….2 b. High Arctic muskox…………………………………………………………………...3 c. North Baffin caribou…………………………………………………………………..4 1.2.2 Qikiqtaaluk Management Initiatives………………………………………………...5 a. Peary Caribou Management Plan……………………………………………………...5 b. High Arctic Muskox…………………………………………………………………..5 c. South Baffin Management Plan……………………………………………………….6 1.3 Kitikmeot Region……………………………………………………………………...8 1.3.1 Kitikmeot Research Initiatives………………………………………………………9 a. Wolverine and Grizzly bear Hair Snagging………………………………………….. 9 b. Mainland Caribou Projects……………………………………………………………9 c. Boothia Caribou Project……………………………………………………………...10 d. Dolphin and Union Caribou Project……………………............................................10 e. Mainland and Boothia Peninsula Muskoxen………………………………………...11 f. Harvest and Ecological Research Operational System (HEROS)…………………...12 g. Vegetation Mapping……………………………………………………………….....12 1.3.2 Kitikmeot Management Initiatives…………………………………………………12 a. Grizzly Bear Management…………………………………………………………...12 b. Bluenose East Management Plan…………………………………………………….12 c. DU Caribou Management Plan………………………………………………………13 d. Muskox Status -
Discussion on the Newfoundland and Labrador Inshore Fishery
Discussion on the Newfoundland and Labrador Inshore Fishery What We Heard - A Summary of Comments from Public Discussions on the Future of Newfoundland and Labrador’s Inshore Fishery. © Her Majesty the Queen in the Right of Canada, 2020. PDF: Dept. catalogue number: DFO/2019-2020 GC catalogue number: Fs114-19/2020E-PDF ISBN: 978-0-660-33721-0 The cover is a photo of the Community of Belleoram, Newfoundland and Labrador Photo by Dan Ficken, Environmental Officer Executive Summary Executive Summary A total of 18 inshore fishery consultation meetings were held throughout Newfoundland and Labrador during the winter and spring of 2019. This was the second series of open consultations with inshore fish harvesters, the first series took place in the fall and winter of 2017-18. The purpose of these consultations was to provide a forum for individual harvesters and their representatives to raise concerns and ask questions During the meetings on a wide range of fishery management topics. The meetings featured fish harvesters asked flexible agendas and allowed significant harvester participation. questions and offered During the meetings fish harvesters asked questions and offered their their perspectives about perspectives about various aspects of fisheries management and science. Fisheries and Oceans Canada (DFO) also took the opportunity to address various aspects of the questions and concerns raised during the previous consultations in fisheries management 2017-18. and science. Topics discussed and questions raised in the meetings centred upon five general themes: • The timing of fishery openings and closures; • The way fishery overlap privileges near the boundaries of major fishing zones are managed; • Sharing arrangements for fish stocks, particularly those in which harvesters from neighbouring regions are allocated greater shares than harvesters from Newfoundland and Labrador; • Permitting more buddy-up arrangements; and • Vessel length restrictions and vessel replacement rules. -
Glacial Morphology of the Cary Age Deposits in a Portion of Central Iowa John David Foster Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-1969 Glacial morphology of the Cary age deposits in a portion of central Iowa John David Foster Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Foster, John David, "Glacial morphology of the Cary age deposits in a portion of central Iowa" (1969). Retrospective Theses and Dissertations. 17570. https://lib.dr.iastate.edu/rtd/17570 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. GLACIAL MORPHOLOGY OF THE CARY AGE DEPOSITS IN A PORTION OF CENTRAL IOWA by John David Foster A Thesis Submitted to the . • Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of MASTER OF SCIENCE Major Subject: Geology Approved: Signatures have been redacted for privacy rs ity Ames, Iowa 1969 !/Y-J ii &EW TABLE OF CONTENTS Page ABSTRACT vii INTRODUCTION Location 2 Drainage 3 Geologic Description 3 Preglacial Topography 6 Pleistocene Stratigraphy 12 Acknowledgments . 16 GLACIAL GEOLOGY 18 General Description 18 Glacial Geology of the Study Area 18 Till Petrofabric Investigation 72 DISCUSSION 82 Introduction 82 Hypothetical Regime of the Cary Glacier 82 Review -
ARCTIC CHANGE 2014 8-12 December - Shaw Centre - Ottawa, Canada
ARCTIC CHANGE 2014 8-12 December - Shaw Centre - Ottawa, Canada Oral Presentation Abstracts Arctic Change 2014 Oral Presentation Abstracts ORAL PRESENTATION ABSTRACTS TEMPORAL TREND ASSESSMENT OF CIRCULATING conducted when possible. Results: Maternal levels of Hg and MERCURY AND PCB 153 CONCENTRATIONS AMONG PCB 153 significantly decreased between 1992 and 2013. NUNAVIMMIUT PREGNANT WOMEN (1992-2013) Overall, concentrations of Hg and PCB 153 among pregnant women decreased respectively by 57% and 77% over the last Adamou, Therese Yero (12) ([email protected]), M. Riva (12), E. Dewailly (12), S. Dery (3), G. Muckle (12), R. two decades. In 2013, concentrations of Hg and PCB 153 were Dallaire (12), EA. Laouan Sidi (1) and P. Ayotte (1,2,4) respectively 5.2 µg/L and 40.36 µg/kg plasma lipids (geometric means). Discussion: Our results suggest a significant decrease (1) Axe santé des populations et pratiques optimales en santé, of Hg and PCB 153 maternal levels from 1992 to 2013. Centre de Recherche du Centre Hospitalier Universitaire de Geometric mean concentrations of Hg and PCB 153 measured Québec, Québec,Québec, G1V 2M2 in 2013 were below Health Canada guidelines. The decline (2) Université Laval, Québec, Québec, G1V 0A6 observed could be related to measures implemented at regional, (3) Nunavik Regional Board of Health and Social Services, Kuujjuaq, Québec national and international levels to reduce environmental (4) Institut National de Santé Publique du Québec (INSPQ), pollution by mercury and PCB and/or a significant decrease Québec, G1V 5B3 of seafood consumption by pregnant women. These results have to be interpreted with caution. -
Curt Teich Postcard Archives Towns and Cities
Curt Teich Postcard Archives Towns and Cities Alaska Aialik Bay Alaska Highway Alcan Highway Anchorage Arctic Auk Lake Cape Prince of Wales Castle Rock Chilkoot Pass Columbia Glacier Cook Inlet Copper River Cordova Curry Dawson Denali Denali National Park Eagle Fairbanks Five Finger Rapids Gastineau Channel Glacier Bay Glenn Highway Haines Harding Gateway Homer Hoonah Hurricane Gulch Inland Passage Inside Passage Isabel Pass Juneau Katmai National Monument Kenai Kenai Lake Kenai Peninsula Kenai River Kechikan Ketchikan Creek Kodiak Kodiak Island Kotzebue Lake Atlin Lake Bennett Latouche Lynn Canal Matanuska Valley McKinley Park Mendenhall Glacier Miles Canyon Montgomery Mount Blackburn Mount Dewey Mount McKinley Mount McKinley Park Mount O’Neal Mount Sanford Muir Glacier Nome North Slope Noyes Island Nushagak Opelika Palmer Petersburg Pribilof Island Resurrection Bay Richardson Highway Rocy Point St. Michael Sawtooth Mountain Sentinal Island Seward Sitka Sitka National Park Skagway Southeastern Alaska Stikine Rier Sulzer Summit Swift Current Taku Glacier Taku Inlet Taku Lodge Tanana Tanana River Tok Tunnel Mountain Valdez White Pass Whitehorse Wrangell Wrangell Narrow Yukon Yukon River General Views—no specific location Alabama Albany Albertville Alexander City Andalusia Anniston Ashford Athens Attalla Auburn Batesville Bessemer Birmingham Blue Lake Blue Springs Boaz Bobler’s Creek Boyles Brewton Bridgeport Camden Camp Hill Camp Rucker Carbon Hill Castleberry Centerville Centre Chapman Chattahoochee Valley Cheaha State Park Choctaw County -
Who Discovered the Northwest Passage? Janice Cavell1
ARCTIC VOL. 71, NO.3 (SEPTEMBER 2018) P.292 – 308 https://doi.org/10.14430/arctic4733 Who Discovered the Northwest Passage? Janice Cavell1 (Received 31 January 2018; accepted in revised form 1 May 2018) ABSTRACT. In 1855 a parliamentary committee concluded that Robert McClure deserved to be rewarded as the discoverer of a Northwest Passage. Since then, various writers have put forward rival claims on behalf of Sir John Franklin, John Rae, and Roald Amundsen. This article examines the process of 19th-century European exploration in the Arctic Archipelago, the definition of discovering a passage that prevailed at the time, and the arguments for and against the various contenders. It concludes that while no one explorer was “the” discoverer, McClure’s achievement deserves reconsideration. Key words: Northwest Passage; John Franklin; Robert McClure; John Rae; Roald Amundsen RÉSUMÉ. En 1855, un comité parlementaire a conclu que Robert McClure méritait de recevoir le titre de découvreur d’un passage du Nord-Ouest. Depuis lors, diverses personnes ont avancé des prétentions rivales à l’endroit de Sir John Franklin, de John Rae et de Roald Amundsen. Cet article se penche sur l’exploration européenne de l’archipel Arctique au XIXe siècle, sur la définition de la découverte d’un passage en vigueur à l’époque, de même que sur les arguments pour et contre les divers prétendants au titre. Nous concluons en affirmant que même si aucun des explorateurs n’a été « le » découvreur, les réalisations de Robert McClure méritent d’être considérées de nouveau. Mots clés : passage du Nord-Ouest; John Franklin; Robert McClure; John Rae; Roald Amundsen Traduit pour la revue Arctic par Nicole Giguère.