Thin Flexible Lithium-Ion Battery Featuring Graphite Paper Based

Total Page:16

File Type:pdf, Size:1020Kb

Thin Flexible Lithium-Ion Battery Featuring Graphite Paper Based 169 ARTICLE Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity Hang Qu, Jingshan Hou, Yufeng Tang, Oleg Semenikhin, and Maksim Skorobogatiy Abstract: A flexible, lightweight, and high conductivity current collector is the key element that enables fabrication of a high-performance, flexible lithium-ion battery. Here, we report a thin, lightweight, and flexible lithium-ion battery that uses graphite papers deposited with nano-sized metallic layers as the current collector, LiFePO4 and Li4Ti5O12 as the cathode and anode materials, respectively, and a PE membrane soaked in LiPF6 as the separator. Using thin, flexible graphite paper as a substrate for the current collector instead of a rigid, heavy metal foil enables us to demonstrate an ultra-thin lithium-ion battery (total thickness including encapsulation layers of less than 250 ␮m) that also features a light weight and high flexibility. Key words: lithium-ion batteries, flexible batteries, graphite paper current collectors. Résumé : Un collecteur de courant a` conductivité élevée, a` la fois flexible et léger, constitue un élément clé pour permettre la fabrication d’une batterie au lithium-ion flexible a` haut rendement. Dans le présent article, nous rapportons la fabrication d’une batterie au lithium-ion mince, flexible et légère constituée de collecteurs de courant faits de feuilles de graphite déposées sur des nanocouches métalliques, d’une électrode composée d’une cathode de LiFePO4 et d’une anode de Li4Ti5O12, et d’un séparateur consistant en une membrane imbibée de LiPF6. L’utilisation d’une feuille de graphite flexible comme substrat du collecteur de courant au lieu d’une feuille métallique lourde et rigide nous permet de démontrer la réalisation d’une batterie au lithium-ion ultramince (épaisseur totale comprenant des couches d’encapsulation de moins de 250 ␮m) qui présente également un faible poids et une grande flexibilité. [Traduit par la Rédaction] Mots-clés : batteries au lithium-ion, batteries flexibles, collecteurs de courant en feuille de graphite. Introduction example, Wang et al. reported a CNT current collector fabricated Many wearable and portable electronic devices require efficient, by cross-stacking continuous CNT films drawn from super-aligned 9 compliant power sources that can fully function when bent, folded, CNT arrays. A flexible LIB electrode could be then deposited on or compressed. Lithium-ion batteries (LIBs) dominate the portable the fabricated CNT films. Compared with metallic current collec- power-source market due to their high energy density, high out- tors, CNT films exhibit a stronger adherence to battery materials. put voltage, long-term stability, and environmentally friendly op- Besides, Li et al. developed flexible nano-porous CNT films directly eration.1 High-performance flexible LIBs are considered to be one on a polypropylene separator using a vacuum filtration technique.10 of the most promising candidates of power sources for the next The as-fabricated CNT films were utilized as binder-free and cur- generation flexible electronic devices.1–3 The LIBs typically consist rent collector-free anodes in LIBs. An electrochemical half-cell was of several functional layers (Fig. 1a). When battery flexibility is fabricated using a CNT film as the anode and a lithium-foil as the desired, all of the battery components should be flexible.1 Among counter electrode; the specific capacity of the CNT film anode was the various functional layers, the current collectors critically af- measured to be ϳ380 mAh/g. Later, the same group also fabricated fect the battery performance, and their flexibility is typically dif- an LIB electrode based on CNT/graphite-nanosheets (GN) composite ficult to achieve together with a high conductivity. films with an optimized CNT/GN ratio of 2:1.11 The reversible ca- Many approaches have been explored for designing flexible pacity of the CNT/GN electrode was found to be 375 mAh/g. More LIBs.4–8 Traditionally, electrode active materials are coated onto a recently, Yoon et al. synthesized CNT films via chemical vapor Cu foil, which works as the anode, and an Al foil is generally used deposition followed by a direct spinning process.12 The CNT films as the cathode. The as-fabricated LIBs are typically heavy and rigid, were then processed by a heating treatment to increase the crys- which makes them unsuitable for truly wearable applications. Re- cently, tremendous effort has been dedicated to the R&D of LIBs talline perfection. Experimental results showed that the electrode that utilize thin, flexible current collectors and free-standing elec- based on heat-treated CNT films exhibited a higher capacity of ϳ trodes. Among these studies, conductive films based on carbon 446 mAh/g that was around twice the capacity of the electrode nanotubes (CNTs) or CNT composites are popularly used as cur- based on raw CNT films. Although CNT films feature great elec- rent collectors or binder-free electrodes due to their appealing trochemical properties for LIB applications, the synthesis of CNT electrical and mechanical properties such as high conductivity, (or CNT-composite) films normally requires a sophisticated pro- high mechanical strength, and large activated surface areas. For cess, and the cost of such materials is high (ϳ1000$ per gram), Received 9 December 2015. Accepted 14 October 2016. H. Qu, J. Hou, and M. Skorobogatiy. Department of Physics Engineering, Ecole Polytechnique de Montreal, Montreal, QC H3C 3A7, Canada. Y. Tang. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China. O. Semenikhin. Department of Chemistry, Western University, London, ON N6A 5B7, Canada. Corresponding author: Hang Qu (email: [email protected]). Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink. Can. J. Chem. 95: 169–173 (2017) dx.doi.org/10.1139/cjc-2015-0593 Published at www.nrcresearchpress.com/cjc on 24 November 2016. 170 Can. J. Chem. Vol. 95, 2017 Fig. 1. (a) Schematic of the thin, flexible lithium-ion battery. (b) A lithium-ion battery sample. [Colour online.] thus creating significant barriers that prevent the utilization of To synthesize the anode and cathode, LFP and LTO were first LIBs in the wearable devices. pre-mixed with MWCNT in a mortar, respectively. Then, the mixture Flexible LIBs can be also produced by the micro-electromechanical was then dispersed in polyvinylidene fluoride (PVDF)/1-methyl-2- systems (MEMS) fabrication technique in which the battery active pyrrolidone solution using a magnetic stirrer for 4 h. The optimal materials are deposited on a flexible substrate in sequence (e.g., in weight ratio of LFP (or LTO), MWCNT, and PVDF was found to be cathode–electrolyte–anode sequence).13,14 As an example, Su et al. 8:1:1. The obtained slurry was then poured onto the current collector demonstrated a flexible LIB fabricated by a sequential deposition and made into a uniform wet film using a Micrometer Adjustable of a LiMnO2 cathode layer, a LiPON electrolyte layer, and a Li anode Film Applicator (MTI Corporation). The composites were dried in a layer on a 70 ␮m thick stainless steel substrate using the RF- vacuum furnace at 80 °C for 3 h and, then, cut into 2 cm2 ×2cm2 sputtering technique.13 The as-fabricated LIB had a capacity of square-shaped electrodes. These electrodes were then further dried 12.8 ␮Ah when discharged at a current density of 5 ␮A/cm2. Also at 110 °C for 12 h to ensure that the solvent (1-methyl-2-pyrrolidone) based on the MEMS fabrication technique, Vieira et al. reported in the slurry was completely evaporated. fabrication of a flexible LIB that used Ge as anode, LiCoO2 as cathode, The LIBs were finally assembled by stacking the as-prepared elec- and LiPON as solid-state electrolyte.14 During the fabrication pro- trodes together with a PE separator layer. Three droplets (ϳ0.15 mL) cess, Si3N4 and LiPO thin layers were also deposited onto the of electrolyte (1.0 M LiPF6) dissolved in ethylene carbonate/dimethyl cathode and anode, respectively, to provide electrical insulation carbonate (EC/DEC) = 50/50 (v/v) from Sigma-Aldrich were added to and a battery chemical stability safeguard. The battery had a capacity the battery during the stacking process. Note that the battery of ϳ46 nAh/cm2. We note that in a MEMS fabrication process, expen- assembly process was completed in a N2-filled glove box to avoid sive deposition equipment such as RF-sputtering systems are gener- oxidation of the electrolyte. Finally, the battery was encapsulated ally required to have precise control of the coated battery layer. with PE films using a lamination machine before it was taken out In this paper, we report a flexible LIB using graphite paper (GP) for characterization. with enhanced conductivity as current collectors (Fig. 1b). The enhancement of conductivity of GP was achieved by depositing a Characterization sub-micron thick metal layer onto a commercial GP by physical The image of the cross section of the battery sample was taken vapor deposition (PVD). Particularly, we use an Al-deposited GP as by an optical microscope (Fig. 2a). The tomography of the Al coat- the current collector for cathode and a bare GP or a Cu-deposited ing on GP substrate was investigated by scanning electron micros- GP as the current collector for anode. In this LIB, LiFePO4 (LFP) and copy, and an energy dispersive spectrum (EDS) of the Al@GP was Li4Ti5O12 (LTO) are used as cathode and anode active materials, measured (Fig. 2b). The charge–discharge tests and EIS measure- respectively, and a polyethylene (PE) nanostructured membrane ments were performed by an Ivium Stat.XR electrochemical work- is used as a separator.
Recommended publications
  • HIGH ENERGY DENSITY BATTERY for WEARABLE ELECTRONICS and SENSORS Thesis Submitted to the School of Engineering of the UNIVERSITY
    HIGH ENERGY DENSITY BATTERY FOR WEARABLE ELECTRONICS AND SENSORS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electrical Engineering By Asha Palanisamy Dayton, Ohio December, 2016 HIGH ENERGY DENSITY BATTERY FOR WEARABLE ELECTRONICS AND SENSORS Name: Palanisamy, Asha APPROVED BY: ___________________________ ___________________________ Guru Subramanyam, Ph.D. Jitendra Kumar, Ph.D. Advisory Committee Chairman Advisory Committee Co-Chairman Department Chair and Professor Senior Research Scientist Department of Electrical and University of Dayton Research Computer Engineering Institute ___________________________ Vamsy Chodavarapu, Ph.D. Committee member Associate Professor Department of Electrical and Computer Engineering ___________________________ ___________________________ Robert J. Wilkens, Ph.D., P.E. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean for Research and Innovation Dean, School of Engineering Professor School of Engineering ii © Copyright by Asha Palanisamy All rights reserved 2016 iii ABSTRACT HIGH ENERGY DENSITY BATTERY FOR WEARABLE ELECTRONICS AND SENSORS Name: Palanisamy, Asha University of Dayton Advisors: Dr. Guru Subramanyam & Dr. Jitendra Kumar Wearable electronics and sensors are being extensively developed for several applications such as health monitors, watches, wristbands, eyeglasses, socks and smart clothing. Energy storage devices such as rechargeable batteries make wearable devices to become more independent from power outlets, or in other words, make device portability. Battery energy density determines how long a battery powered device will work before it needs a recharge. Longer the time before battery needs recharge, better it is for device applications. Therefore, the goal of battery researchers and engineers is to develop a battery that can provide high energy density and longer device operation.
    [Show full text]
  • Transparent Lithium-Ion Batteries
    Transparent lithium-ion batteries Yuan Yanga, Sangmoo Jeongb, Liangbing Hua, Hui Wua, Seok Woo Leea, and Yi Cuia,1 aDepartments of Materials Science and Engineering and bElectrical Engineering, Stanford University, Stanford, CA 94305 Edited* by Tobin J. Marks, Northwestern University, Evanston, IL, and approved June 20, 2011 (received for review February 20, 2011) Transparent devices have recently attracted substantial attention. trode filled with nanomaterials. The battery appears transparent Various applications have been demonstrated, including displays, as the patterned electrode materials cover only a small portion touch screens, and solar cells; however, transparent batteries, a of the whole area and the pattern features are smaller than key component in fully integrated transparent devices, have not the detection limit of human eyes. Li-ion batteries with different yet been reported. As battery electrode materials are not transpar- transparencies were fabricated. For example, a full cell with an ent and have to be thick enough to store energy, the traditional energy density of 10 Wh∕L, including packaging, is demonstrated approach of using thin films for transparent devices is not suitable. at a transparency of 60%. Furthermore, by aligning multiple Here we demonstrate a grid-structured electrode to solve this transparent batteries in series, the energy stored could scale up dilemma, which is fabricated by a microfluidics-assisted method. easily without sacrificing the transparency of the device. Finally, The feature dimension in the electrode is below the resolution limit we show that such a device is also a powerful tool for in situ of human eyes, and, thus, the electrode appears transparent. More- optical studies of electrochemical reactions in batteries.
    [Show full text]
  • Efforts Towards Practical and Sustainable Li/Na‐Air Batteries
    Efforts towards practical and sustainable Li/Na-air batteries Item Type Article Authors Chen, Kai; Huang, Gang; Zhang, Xin-Bo Citation Chen, K., Huang, G., & Zhang, X. (2020). Efforts towards practical and sustainable Li/Na-air batteries. Chinese Journal of Chemistry. doi:10.1002/cjoc.202000408 Eprint version Post-print DOI 10.1002/cjoc.202000408 Publisher Wiley Journal Chinese Journal of Chemistry Rights Archived with thanks to Chinese Journal of Chemistry Download date 28/09/2021 07:09:23 Link to Item http://hdl.handle.net/10754/664977 Chinese Journal of Chemistry CJC 中 国 化 学 - An International Journal Accepted Article Title: Efforts towards practical and sustainable Li/Na-air batteries Authors: Kai Chen, Gang Huang, and Xin-Bo Zhang * This manuscript has been accepted and appears as an Accepted Article online. This work may now be cited as: Chin. J. Chem. 2020, 38, 10.1002/cjoc.202000408. The final Version of Record (VoR) of it with formal page numbers will soon be published online in Early View: http://dx.doi.org/10.1002/cjoc.202000408. ISSN 1001-604X • CN 31-1547/O6 mc.manuscriptcentral.com/cjoc www.cjc.wiley-vch.de Keyword 1, Keyword 2, Keyword 3, Keyword 4, Keyword 5, Chinese Journal Chemistry Authors Up Close Keyword 6 of Chemistry CJC 中 国 化 学 - An International Journal Efforts towards practical and sustainable Li/Na-air batteries Kai Chen,a,b Gang Huang,c and Xin-Bo Zhang *,a,b a State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.
    [Show full text]
  • MMC-Based SRM Drives with Decentralized Battery Energy Storage System for Hybrid Electric Vehicles
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HEREprovided TO EDIT) by University < of Liverpool1 Repository MMC-Based SRM Drives with Decentralized Battery Energy Storage System for Hybrid Electric Vehicles Chun Gan, Member, IEEE, Qingguo Sun, Jianhua Wu, Wubin Kong, Member, IEEE, Cenwei Shi, Member, IEEE, and Yihua Hu, Senior Member, IEEE Abstract—This paper proposes a modular multilevel converter (MMC)-based switched reluctance motor (SRM) drive with decentralized battery energy storage system (BESS) for hybrid electric vehicle (HEV) applications. In the proposed drive, a battery cell and a half- bridge converter is connected as a submodule (SM), and multiple SMs are connected together for the MMC. The modular full-bridge converter is employed to drive the motor. Flexible charging and discharging functions for each SM are obtained by controlling switches in SMs. Multiple working modes and functions are achieved. Compared to conventional and existing SRM drives, there are several advantages for the proposed topology. A lower dc bus voltage can be flexibly achieved by selecting SM operation states, which can dramatically reduce the voltage stress on the switches. Multilevel phase voltage is obtained to improve the torque capability. Battery state-of-charge (SOC) balance can be achieved by independently controlling each SM. Flexible fault-tolerance ability for battery cells is equipped. The battery can be flexibly charged in both running and standstill conditions. Furthermore, completely modular structure is achieved by using standard half-bridge modules, which is beneficial for market mass production.
    [Show full text]
  • "Advanced Battery Development"
    Issue 69 FEV CUSTOMER MAGAZINE CUSTOMER MAGAZINE CUSTOMER "ADVANCED BATTERY DEVELOPMENT" Strong Partner for Battery Development FEV Battery Benchmarking Batteries from a Single Source eDLP – World's largest development and Issue 69 test center for high- voltage batteries Dear Readers, Due to the increasing electrification of vehicle fleets to reduce CO2 and pollutant emissions, batteries for energy storage are a decisive factor for success. This applies not only to the automotive sector, but also to (smaller) commercial vehicle, industrial and marine applications. What all applications have in common is the high development effort for FEV’s partners. In this issue of SPECTRUM, we would like to give you an overview of the competencies FEV can offer to support you in meeting the challenges in this context – from the battery concept to production readiness and beyond, including recycling. In addition to pure battery development, we also address special aspects such as precise monitoring by battery management sys- tems. Furthermore, we present our benchmarking offerings and demonstrate our expertise in battery assembly. Finally, we outline characteristics that arise for the testing of electrified drives and batteries. In a dedicated article on battery testing, we also present the new development and test center for high-voltage energy storage (eDLP) in Sandersdorf-Brehna, Germany, which is the largest facility of its kind in the world. The commissioning of the eDLP will be finalized in the third quarter of this year and will enable FEV to offer all internationally required test methods for high-voltage batteries from the cell to the module to the pack, all at one location.
    [Show full text]
  • Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based
    Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity Hang Qu 1, Jingshan Hou 1, Yufeng Tang 2, Oleg Semenikihin 3, and Maksim Skorobogatiy 1,* 1 Department of Physics Engineering, Ecole Polytechnique de Montreal, Montreal, Quebec, H3C 3A7, Canada. 2 CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China. 3 Department of Chemistry, Western University, London, Ontario, N6A 5B7, Canada. Abstract: A flexible, light weight and high conductivity current collector is the key element that enables fabrication of high performance flexible lithium ion battery. Here we report a thin, light weight and flexible lithium ion battery that uses graphite paper enhanced with a nano-sized metallic layers as the current collector, LiFePO4 and Li4Ti5O12 as the cathode and anode materials, and PE membrane soaked in LiPF6 as a separator. Using thin and flexible graphite paper as a substrate for the current collector instead of a rigid and heavy metal foil enables us to demonstrate a very thin Lithium- Ion Battery into ultra-thin (total thickness including encapsulation layers of less than 250 μm) that is also light weight and highly flexible. 1 Introduction Many wearable and portable electronic devices require efficient, compliant power sources that can fully function when bent, folded, or compressed. 1 Lithium-ion batteries (LIBs) dominate the portable power-source market due to their high energy density, high output voltage, long-term stability and environmentally friendly operation. 1, 2, 3 High performance flexible LIBs are considered to be one of the most promising candidates of the power sources for the next generation flexible electronic devices.
    [Show full text]
  • Kammoun-Dissertation-2016
    ©Copyright by Mejdi Kammoun 2016 All Rights Reserved Flexible and Stretchable Lithium-Ion Batteries Based on Solid Polymer Nanocomposite Electrolyte A Dissertation Presented to the Faculty of the Department of Mechanical Engineering University of Houston Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Mechanical Engineering by Mejdi Kammoun December 2016 Flexible and Stretchable Lithium-Ion Batteries Based on Solid Polymer Nanocomposite Electrolyte Mejdi Kammoun Approved: Chair of the Committee Dr. Haleh Ardebili, Associate Professor,Mechanical Engineering Committee Members: Dr. Yashashree Kulkarni, Associate Professor, Mechanical Engineering Dr. Jae-Hyun Ryou, Assistant Professor, Mechanical Engineering Dr. Dong Liu, Associate Professor, Mechanical Engineering Dr. Yan Yao, Assistant Professor, Electrical & Computer Engineering Dr. Suresh K. Khator, Associate Dr. Pradeep Sharma, Department Dean, Cullen College of Engineering Chair of Mechanical Engineering 1 Acknowledgements First and foremost, I would like to thank my advisor, Dr. Haleh Ardebili, for giving me the opportunity to work within her group, and for all the support provided inside and outside the academic work. Her intellectual support at various stages of this work has been invaluable in enabling me to carry this work to completion. I cannot go without expressing my admiration to her genuine ideas and physical intuitions that make her a successful advisor. She always trusted me as an independent researcher and was open to new ideas while making sure our research stayed in the right path. Second, I would like to thank the chairman of the mechanical engineering department, Dr. Pradeep Sharma, for all his advices and his continuous support. Third, I would like to acknowledge my committee members, Dr.
    [Show full text]
  • Lithium Technology Corp. Powers Hybrid Electric Supercar INSIDE
    July/August 2008 www.BatteryPowerOnline.com Volume 12, Issue 4 Lithium Technology Corp. Powers Hybrid Electric Supercar INSIDE Heinz-Harald Frentzen, an ex-Formula One (F1) racer Battery Power 2008 and champion, and Gumpert Sportwagenmanufaktur GmbH Conference Preview p 8 entered a hybrid electric version of its Apollo supercar into this year's Nurburgring 24 hour race, which was held at end Optimizing Power Source of May. The car was powered by a battery solution from Selection in the Design Lithium Technology Corp. (LTC). The car was piloted by Process p 11 Mr. Dirk Muller and Mr. Frentzen. "We are pleased to co-sponsor the first hybrid electric Portable Power: Smaller, version of the Apollo, produced by Gumpert in Germany, Lighter and Affordable p 12 and lend our technology to a movement that increases public awareness of hybrid electric vehicle (HEV) performance and encourages advances in HEV technology," said Dr. Klaus Brandt, CEO of LTC. "LTC believes that Racing plays a sig- nificant role in pioneering the use of new technologies, such as lithium ion batteries, and offers the opportunity for us to demonstrate the performance of our batteries under extreme conditions while exhibiting the benefits and usability of our products to traditional car manufacturers." Battery Power 2008 The hybrid Apollo used a 3.3 liter V8 bi-turbo petrol mill Conference Brochure with a 100 kW electric motor. The 9 kWh GAIA battery was p 12-13 made of 90 high power 27 Ah cells connected in series and weighed about 190 kilograms. The battery included an Circuit Protection Designs advanced battery management system (BMS) that transmit- For a Mobile World p 13 ted battery performance data via satellite for monitoring and enhance performance control of the technical team.
    [Show full text]
  • Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates
    Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates Na Lia,b,1, Zongping Chena,1, Wencai Rena, Feng Lia, and Hui-Ming Chenga,2 aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and bDepartment of Materials Science & Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China Edited* by Mildred S. Dresselhaus, Massachusetts Institute of Technology, Cambridge, MA 02139 and approved September 17, 2012 (received for review June 13, 2012) There is growing interest in thin, lightweight, and flexible energy nanomaterials (16–18). Based on these strategies, electrodes storage devices to meet the special needs for next-generation, with a highly conductive pathway for electrons, a short ion dif- high-performance, flexible electronics. Here we report a thin, fusion length, and a fast transport channel for the ion flux can be lightweight, and flexible lithium ion battery made from graphene fabricated for fast charge and discharge. A series of electro- foam, a three-dimensional, flexible, and conductive interconnected chemical active materials (4, 15–18) and three-dimensional (3D) network, as a current collector, loaded with Li4Ti5O12 and LiFePO4, hybrid electrodes (5, 14) have been recently fabricated to as- for use as anode and cathode, respectively. No metal current col- semble rechargeable batteries with high charge and discharge lectors, conducting additives, or binders are used. The excellent rates. For example, Braun et al. (5) recently fabricated a mac- electrical conductivity and pore structure of the hybrid electrodes roporous nickel network for battery electrodes with ultrafast enable rapid electron and ion transport.
    [Show full text]
  • Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates
    Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates Na Lia,b,1, Zongping Chena,1, Wencai Rena, Feng Lia, and Hui-Ming Chenga,2 aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and bDepartment of Materials Science & Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China Edited* by Mildred S. Dresselhaus, Massachusetts Institute of Technology, Cambridge, MA 02139 and approved September 17, 2012 (received for review June 13, 2012) There is growing interest in thin, lightweight, and flexible energy nanomaterials (16–18). Based on these strategies, electrodes storage devices to meet the special needs for next-generation, with a highly conductive pathway for electrons, a short ion dif- high-performance, flexible electronics. Here we report a thin, fusion length, and a fast transport channel for the ion flux can be lightweight, and flexible lithium ion battery made from graphene fabricated for fast charge and discharge. A series of electro- foam, a three-dimensional, flexible, and conductive interconnected chemical active materials (4, 15–18) and three-dimensional (3D) network, as a current collector, loaded with Li4Ti5O12 and LiFePO4, hybrid electrodes (5, 14) have been recently fabricated to as- for use as anode and cathode, respectively. No metal current col- semble rechargeable batteries with high charge and discharge lectors, conducting additives, or binders are used. The excellent rates. For example, Braun et al. (5) recently fabricated a mac- electrical conductivity and pore structure of the hybrid electrodes roporous nickel network for battery electrodes with ultrafast enable rapid electron and ion transport.
    [Show full text]
  • On the Development of Flexible Lithium-Ion Battery Architectures
    FROM 2D TO 3D: ON THE DEVELOPMENT OF FLEXIBLE AND CONFORMAL LI-ION BATTERIES VIA ADDITIVE MANUFACTURING A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By AARON JOSEPH BLAKE M.S.E., Wright State University, 2013 B.S.M.E., Wright State University, 2012 __________________________________________ 2016 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 01, 2016 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Aaron Joseph Blake ENTITLED From 2D to 3D: On the Development of Flexible and Conformal Li-Ion Batteries via Additive Manufacturing BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. ___________________________________ Hong Huang, Ph.D. Dissertation Director ___________________________________ Frank W. Ciarallo, Ph.D. Director, Ph.D. in Engineering Program ___________________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School Committee on Final Examination ________________________________ Hong Huang, Ph.D. ________________________________ Sharmila M. Mukhopadhyay, Ph.D. ________________________________ Henry D. Young, Ph.D. ________________________________ Christopher Muratore, Ph.D. ________________________________ Michael F. Durstock, Ph.D. ii ABSTRACT Blake, Aaron Joseph, Ph.D. in Engineering Program, Department of Mechanical and Materials Engineering, Wright State University, 2016. Title: From 2D to 3D: On the Development of Flexible and Conformal Li-Ion Batteries via Additive Manufacturing. The future of electronic devices, such as smart skins, embedded electronics, and wearable applications, requires a disruptive innovation to the design of conventional batteries. This research was thus aimed at leveraging additive manufacturing as a means to invigorate the design of next-generation Li-ion batteries to meet the emerging requirements of flexible electronics.
    [Show full text]
  • Designing Flexible Lithium-Ion Batteries by Structural Engineering
    Perspective Cite This: ACS Energy Lett. 2019, 4, 690−701 http://pubs.acs.org/journal/aelccp Designing Flexible Lithium-Ion Batteries by Structural Engineering † ∥ § ‡ § † ∥ ‡ ⊥ † Guoyu Qian, , , Xiangbiao Liao, , Yuxiang Zhu, Feng Pan,*, Xi Chen,*, , and Yuan Yang*, † Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10025, United States ∥ School of Advanced Materials, Shenzhen Graduate School, Peking University, Shenzhen 518055, People’s Republic of China ‡ Yonghong Zhang Family Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University, New York, New York 10025, United States ⊥ School of Chemical Engineering, Northwest University, Xi’an 710069, China ABSTRACT: Flexible lithium-ion batteries (LIBs) can be seamlessly integrated into flexible devices, such as flexible displays, wearable devices, and smart cards, to provide power for steady operation under mechanical deformation. An ideal flexible battery should have high flexibility, high energy density, and high power density simultaneously, which are often in conflict with each other. In this Perspective, we analyze the flexible batteries based on structural designs from both the component level and device level. Recent progress in flexible LIBs, including advances in porous structures for battery components, superslim designs, topological architectures, and battery structures with decoupling concepts, is reviewed. In the end, perspectives on the future of flexible batteries are presented and discussed. nterests in flexible devices have surged in the past several Table 1. Maximum Strain in Flexible Devices and Affordable − decades, in areas such as flexible displays,1 active radio Strain in Metal Foils in Batteries5 7 frequency identification tags,2 wearable health devices,3 I fl 4 fl flexible device or target bending thickness nominal strain level or and exible solar panels.
    [Show full text]