Dark Matter Distribution in Dwarf Spheroidals
Total Page:16
File Type:pdf, Size:1020Kb
Research Collection Doctoral Thesis Dark Matter Distribution in Dwarf Spheroidals Author(s): Steger, Pascal S.P. Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010476521 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DARK MATTER Distribution in Dwarf Spheroidals PhD Thesis Pascal Stephan Philipp Steger March 2015 DISS. ETH NO. 22628 Dark Matter Distribution in Dwarf Spheroidals A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Pascal Stephan Philipp Steger MSc Physics ETH born on 04. 08. 1986 citizen of Emmen / Ettiswil LU, Switzerland accepted on the recommendation of Prof. Dr. Simon Lilly Prof. Dr. Justin I. Read Prof. Dr. Jorge Pe˜narrubia 2015 Acknowledgements I warmly thank Justin Read for the pleasant environment. You guided me around numer- ous obstacles, and showed me what science really is all about. You helped me with inputs for simplifications and generalisations, whenever they were sorely needed. And some cute integral transformations. You helped me personally by showing me what counts in life, and how adventurous ones dreams might be. I want to thank Simon Lilly for the hassle- free administrative takeover. Thank you for your patience and for enabling me to show my work at all the conferences, too. Frank Schweitzer, thank you for your succinct and energetic clarifications on the scientific method. It has been proven to be an invaluable guide to perform research. Thank you, Hamish Silverwood, for the effort to take over the disc geometry part of my mass-modelling code. Silvia Sivertsson is thanked for asking questions that led to the extinction of some bugs. And back to Hamish again: Thank you for your insights into New Zealand’s culture. It’s valued. I thank Matthew Walker for all the exquisite data and mock galaxies he provided for free. Thank you as well for the warm welcomes at all the conferences we met. Alexander Hobbs broadened my horizon on numerical astrophysics. Thank you for all the important lessons on CBM and strong frames, too. That is knowledge that will not be forgotten. Ouch. The precursor non-equilibrium chemistry simulation was performed by Aaron Boley, who gave useful technical hints as well. Silvia Garbari provided a prototype algorithm for the correction of the prospective halo centres. Might be simple, but makes all the difference when searching for cusps. A warm thank-you goes to Michael Mayer, who showed me all about teaching. Your policy of freedom for the exercise composition allowed me to express myself, but I never failed to know the boundaries, either. I had several discussions with Jorge Penarrubia on general topics of thermodynamics, dynamics, and physics itself. Thank you for the overview this gave me. Thank you as well for your down-to-earth hints for code opti- misation. Thank you, Vincent Henault, for your introduction to MultiNest with high number of parameters, and the interest for applying the method to globular clusters – it broadened my horizon. Mark Gieles contributed to the spherical Jeans modelling by critically assessing the method. Thank you for your friendly welcome at Surrey. iii Thank you, Endre and Niculin. Your enthusiasm for big data and our project on modelling correlations has opened doors. Some special kudos go to Niculin for sharing with me the knowledge about Dvorak-for-Programmers, and the boost his GPG usage has indirectly given my work-flow. Thank you all from the Akademischer Mittelbau des Physikdepartements, who showed me the broader physics science world, PSI, CERN, ABB, IBM, and some of the world aside of physics with canoeing and soccer. You’re great sports! Thank you, Annina. It has been a most gratifying PhD time thanks to your loving affection, all the happiness, and motivation. You are my muse! Z¨urich, March 2015 Pascal S.P. Steger iv Contents Acknowledgements iv Contents ix Abstract xvii Kurzfassung xix 1 Introduction1 1.1 Dark Matter...................................2 1.1.1 Evidence for Dark Matter........................2 1.1.2 What is Dark Matter?..........................6 1.1.3 Direct and Indirect Detection Experiments.............. 12 1.1.4 Cold Dark Matter vs Warm Dark Matter............... 14 1.1.5 Cusps and Cores............................. 16 1.1.6 The Need for Small Scales........................ 17 1.1.7 Predictions from Simulations...................... 19 1.1.8 Dwarf Galaxies.............................. 21 1.2 Mass Modelling.................................. 23 v CONTENTS 1.2.1 Jeans Modelling............................. 23 1.2.2 Other Mass Modelling Approaches................... 24 1.3 Aim of This Thesis................................ 25 2 Mass Modelling Spherical Systems 27 2.1 Introduction.................................... 27 2.2 Method...................................... 30 2.2.1 Derivation of the Key Equations.................... 30 2.2.2 The Mass Distribution.......................... 32 2.2.3 The Tracer Density Profile....................... 33 2.2.4 The Velocity Anisotropy......................... 34 2.2.5 Comparison with Data.......................... 35 2.2.6 Priors................................... 36 2.2.7 Parameter Space Sampling....................... 36 2.3 Mock Data.................................... 37 2.4 Results....................................... 39 2.4.1 Single Tracer Population......................... 39 2.4.2 Two Tracer Populations......................... 42 2.4.3 Triaxial Mock Data........................... 43 2.5 Conclusions.................................... 45 2.6 Appendix..................................... 46 2.6.1 Convergence of the MultiNest Model Ensemble........... 46 2.6.2 Influence of Binning Choices...................... 46 3 Mass Modelling of Fornax 49 3.1 Introduction.................................... 50 3.2 Method...................................... 51 vi CONTENTS 3.2.1 The GravImage Code......................... 51 3.2.2 Priors in Use............................... 53 3.3 Data........................................ 54 3.3.1 Photometry................................ 55 3.3.2 Splitting Populations........................... 55 3.4 Results....................................... 56 3.4.1 Single Component Models without Anisotropy Priors......... 56 3.4.2 Single Component Models with Central Isotropy Prior........ 58 3.4.3 Two Populations split by Mg without Anisotropy Priors....... 60 3.5 Conclusions.................................... 60 4 Mass Modelling of other Dwarf Spheroidals 61 4.1 Introduction.................................... 61 4.2 Baryonic Density Profiles............................ 63 4.3 Data........................................ 63 4.4 Results....................................... 63 4.5 Conclusions.................................... 65 4.6 Further Work................................... 66 4.7 Appendix..................................... 67 4.7.1 Priors in Use............................... 67 5 Simulations of Dwarf Galaxies 69 5.1 Simulation Methods............................... 69 5.1.1 Non-Equilibrium Chemistry....................... 70 5.1.2 Star Formation and Feedback...................... 74 5.1.3 Halo Finding............................... 75 5.1.4 Bound Structures............................. 76 vii CONTENTS 5.1.5 Radial Profile............................... 77 5.1.6 Relaxation Radius............................ 77 5.2 Simulation Suite................................. 78 5.2.1 Initial Conditions............................. 79 5.2.2 Temporal Coverage............................ 85 5.3 Results....................................... 87 5.3.1 Halo Finding............................... 89 5.3.2 Dark Matter Density Profile....................... 95 5.3.3 Stars.................................... 99 5.3.4 Forming Globular Clusters and Dwarfs at High Redshift....... 103 5.4 Conclusions.................................... 103 6 Conclusions and Future Prospects 105 6.1 Conclusions.................................... 105 6.1.1 Addressing the Questions posed at the Start of the Thesis...... 105 6.1.2 Future Prospects............................. 106 Appendix 109 A.1 Plummer Profile................................. 109 A.2 NFW Profile................................... 110 A.3 King Profile.................................... 110 A.4 Sersic Profiles................................... 110 A.5 Prigniel-Simien Profile.............................. 111 A.6 Double-power law Profile............................ 111 A.7 Einasto Profile.................................. 111 A.1 Local Dark Matter Density........................... 115 A.2 Geometry..................................... 116 viii CONTENTS A.3 Representation.................................. 117 ix CONTENTS x List of Figures 1.1 NGC 3198 Rotation Curve............................4 1.2 Milky Way Rotation Curve...........................5 1.3 WDM Simulations................................ 15 1.4 Cosmic Web.................................... 17 1.5 Power Spectrum Fit............................... 18 1.6 Cooling Functions................................ 19 1.7 Fornax Dwarf Spheroidal............................ 21 2.1 Fitting of Analytic Anisotropy......................... 35 2.2 GravImage Data Fit.............................. 39 2.3 Cusped profiles.................................. 40 2.4 Cored Profiles................................... 41 2.5 Cored Profiles..................................