Zinc Finger Proteins: Getting a Grip On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Protein Structure & Folding
6 Protein Structure & Folding To understand protein folding In the last chapter we learned that proteins are composed of amino acids Goal as a chemical equilibrium. linked together by peptide bonds. We also learned that the twenty amino acids display a wide range of chemical properties. In this chapter we will see Objectives that how a protein folds is determined by its amino acid sequence and that the three-dimensional shape of a folded protein determines its function by After this chapter, you should be able to: the way it positions these amino acids. Finally, we will see that proteins fold • describe the four levels of protein because doing so minimizes Gibbs free energy and that this minimization structure and the thermodynamic involves both making the most favorable bonds and maximizing disorder. forces that stabilize them. • explain how entropy (S) and enthalpy Proteins exhibit four levels of structure (H) contribute to Gibbs free energy. • use the equation ΔG = ΔH – TΔS The structure of proteins can be broken down into four levels of to determine the dependence of organization. The first is primary structure, the linear sequence of amino the favorability of a reaction on acids in the polypeptide chain. By convention, the primary sequence is temperature. written in order from the amino acid at the N-terminus (by convention • explain the hydrophobic effect and its usually on the left) to the amino acid at the C-terminus. The second level role in protein folding. of protein structure, secondary structure, is the local conformation adopted by stretches of contiguous amino acids. -
DNA Glycosylase Exercise - Levels 1 & 2: Answer Key
Name________________________ StarBiochem DNA Glycosylase Exercise - Levels 1 & 2: Answer Key Background In this exercise, you will explore the structure of a DNA repair protein found in most species, including bacteria. DNA repair proteins move along DNA strands, checking for mistakes or damage. DNA glycosylases, a specific type of DNA repair protein, recognize DNA bases that have been chemically altered and remove them, leaving a site in the DNA without a base. Other proteins then come along to fill in the missing DNA base. Learning objectives We will explore the relationship between a protein’s structure and its function in a human DNA glycosylase called human 8-oxoguanine glycosylase (hOGG1). Getting started We will begin this exercise by exploring the structure of hOGG1 using a molecular 3-D viewer called StarBiochem. In this particular structure, the repair protein is bound to a segment of DNA that has been damaged. We will first focus on the structure hOGG1 and then on how this protein interacts with DNA to repair a damaged DNA base. • To begin using StarBiochem, please navigate to: http://mit.edu/star/biochem/. • Click on the Start button Click on the Start button for StarBiochem. • Click Trust when a prompt appears asking if you trust the certificate. • In the top menu, click on Samples à Select from Samples. Within the Amino Acid/Proteins à Protein tab, select “DNA glycosylase hOGG1 w/ DNA – H. sapiens (1EBM)”. “1EBM” is the four character unique ID for this structure. Take a moment to look at the structure from various angles by rotating and zooming on the structure. -
Engineering Zinc-Finger Protein and CRISPR/Cas9 Constructs to Model the Epigenetic and Transcriptional Phenomena That Underlie Cocaine-Related Behaviors
Engineering zinc-finger protein and CRISPR/Cas9 constructs to model the epigenetic and transcriptional phenomena that underlie cocaine-related behaviors Hamilton PJ, Heller EA, Ortiz Torres I, Burek DD, Lombroso SI, Pirpinias ST, Neve RL, Nestler EJ Multiple studies have implicated genome-wide epigenetic remodeling events in brain reward regions following drug exposure. However, only recently has it become possible to target a given type of epigenetic remodeling to a single gene of interest, in order to probe the causal relationship between such regulation and neuropsychiatric disease (Heller et al., Nat Neurosci, 2014). Our group has successfully utilized synthetic zinc- finger proteins (ZFPs), fused to either the transcriptional repressor, G9a, that promotes histone methylation or the transcriptional activator, p65, that promotes histone acetylation, to determine the behavioral effects of targeted in vivo epigenetic reprogramming in a locus-specific and cell-type specific manner. Given the success of our ZFP approaches, we have broadened our technical repertoire to include the more novel and flexible CRISPR/Cas9 technology. We designed guide RNAs to target nuclease-dead Cas9 (dCas9) fused to effector domains to the fosB gene locus, a locus heavily implicated in the pathogenesis of drug abuse. We observe that dCas9 fused to the transcriptional activator, VP64, or the transcriptional repressor, KRAB, and targeted to specific sites in the fosB promoter is sufficient to regulate FosB and ΔFosB mRNA levels, in both cultured cells and in the nucleus accumbens (NAc) of mice receiving viral delivery of CRISPR constructs. Next, we designed a fusion construct linking the dCas9 moiety to a pseudo-phosphorylated isoform of the transcription factor CREB (dCas9 CREB(S133D)). -
Proteasomes on the Chromosome Cell Research (2017) 27:602-603
602 Cell Research (2017) 27:602-603. © 2017 IBCB, SIBS, CAS All rights reserved 1001-0602/17 $ 32.00 RESEARCH HIGHLIGHT www.nature.com/cr Proteasomes on the chromosome Cell Research (2017) 27:602-603. doi:10.1038/cr.2017.28; published online 7 March 2017 Targeted proteolysis plays an this process, both in mediating homolog ligases, respectively, as RN components important role in the execution and association and in providing crossovers that impact crossover formation [5, 6]. regulation of many cellular events. that tether homologs and ensure their In the first of the two papers, Ahuja et Two recent papers in Science identify accurate segregation. Meiotic recom- al. [7] report that budding yeast pre9∆ novel roles for proteasome-mediated bination is initiated by DNA double- mutants, which lack a nonessential proteolysis in homologous chromo- strand breaks (DSBs) at many sites proteasome subunit, display defects in some pairing, recombination, and along chromosomes, and the multiple meiotic DSB repair, in chromosome segregation during meiosis. interhomolog interactions formed by pairing and synapsis, and in crossover Protein degradation by the 26S pro- DSB repair drive homolog association, formation. Similar defects are seen, teasome drives a variety of processes culminating in the end-to-end homolog but to a lesser extent, in cells treated central to the cell cycle, growth, and dif- synapsis by a protein structure called with the proteasome inhibitor MG132. ferentiation. Proteins are targeted to the the synaptonemal complex (SC) [3]. These defects all can be ascribed to proteasome by covalently ligated chains SC-associated focal protein complexes, a failure to remove nonhomologous of ubiquitin, a small (8.5 kDa) protein. -
Chapter 13 Protein Structure Learning Objectives
Chapter 13 Protein structure Learning objectives Upon completing this material you should be able to: ■ understand the principles of protein primary, secondary, tertiary, and quaternary structure; ■use the NCBI tool CN3D to view a protein structure; ■use the NCBI tool VAST to align two structures; ■explain the role of PDB including its purpose, contents, and tools; ■explain the role of structure annotation databases such as SCOP and CATH; and ■describe approaches to modeling the three-dimensional structure of proteins. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Overview: protein structure The three-dimensional structure of a protein determines its capacity to function. Christian Anfinsen and others denatured ribonuclease, observed rapid refolding, and demonstrated that the primary amino acid sequence determines its three-dimensional structure. We can study protein structure to understand problems such as the consequence of disease-causing mutations; the properties of ligand-binding sites; and the functions of homologs. Outline Overview of protein structure Principles of protein structure Protein Data Bank Protein structure prediction Intrinsically disordered proteins Protein structure and disease Protein primary and secondary structure Results from three secondary structure programs are shown, with their consensus. h: alpha helix; c: random coil; e: extended strand Protein tertiary and quaternary structure Quarternary structure: the four subunits of hemoglobin are shown (with an α 2β2 composition and one beta globin chain high- lighted) as well as four noncovalently attached heme groups. The peptide bond; phi and psi angles The peptide bond; phi and psi angles in DeepView Protein secondary structure Protein secondary structure is determined by the amino acid side chains. -
Introduction to Proteins and Amino Acids Introduction
Introduction to Proteins and Amino Acids Introduction • Twenty percent of the human body is made up of proteins. Proteins are the large, complex molecules that are critical for normal functioning of cells. • They are essential for the structure, function, and regulation of the body’s tissues and organs. • Proteins are made up of smaller units called amino acids, which are building blocks of proteins. They are attached to one another by peptide bonds forming a long chain of proteins. Amino acid structure and its classification • An amino acid contains both a carboxylic group and an amino group. Amino acids that have an amino group bonded directly to the alpha-carbon are referred to as alpha amino acids. • Every alpha amino acid has a carbon atom, called an alpha carbon, Cα ; bonded to a carboxylic acid, –COOH group; an amino, –NH2 group; a hydrogen atom; and an R group that is unique for every amino acid. Classification of amino acids • There are 20 amino acids. Based on the nature of their ‘R’ group, they are classified based on their polarity as: Classification based on essentiality: Essential amino acids are the amino acids which you need through your diet because your body cannot make them. Whereas non essential amino acids are the amino acids which are not an essential part of your diet because they can be synthesized by your body. Essential Non essential Histidine Alanine Isoleucine Arginine Leucine Aspargine Methionine Aspartate Phenyl alanine Cystine Threonine Glutamic acid Tryptophan Glycine Valine Ornithine Proline Serine Tyrosine Peptide bonds • Amino acids are linked together by ‘amide groups’ called peptide bonds. -
Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis Vinifera L.): Insights Into the Roles in the Pollen Development Regulation
G C A T T A C G G C A T genes Article Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation Oscar Arrey-Salas 1,* , José Carlos Caris-Maldonado 2, Bairon Hernández-Rojas 3 and Enrique Gonzalez 1 1 Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile; [email protected] 2 Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, 3550000 Pencahue, Chile; [email protected] 3 Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile; [email protected] * Correspondence: [email protected] Abstract: Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine Citation: Arrey-Salas, O.; remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte Caris-Maldonado, J.C.; development, we performed a genome-wide identification and characterization of genes encoding Hernández-Rojas, B.; Gonzalez, E. ZFP (VviZFP family). -
Structure of the Lifeact–F-Actin Complex
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.16.951269; this version posted February 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Structure of the Lifeact–F-actin complex 2 Alexander Belyy1, Felipe Merino1,2, Oleg Sitsel1 and Stefan Raunser1* 3 1Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, 4 Germany 5 2Current address: Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 6 72076, Tübingen, Germany. 7 *Correspondence should be addressed to: [email protected] 8 9 Abstract 10 Lifeact is a short actin-binding peptide that is used to visualize filamentous actin (F-actin) 11 structures in live eukaryotic cells using fluorescence microscopy. However, this popular probe 12 has been shown to alter cellular morphology by affecting the structure of the cytoskeleton. The 13 molecular basis for such artefacts is poorly understood. Here, we determined the high- 14 resolution structure of the Lifeact–F-actin complex using electron cryo-microscopy. The 15 structure reveals that Lifeact interacts with a hydrophobic binding pocket on F-actin and 16 stretches over two adjacent actin subunits, stabilizing the DNase I-binding loop of actin in the 17 closed conformation. Interestingly, the hydrophobic binding site is also used by actin-binding 18 proteins, such as cofilin and myosin and actin-binding toxins, such as TccC3HVR from 19 Photorhabdus luminescens and ExoY from Pseudomonas aeruginosa. -
Overcharging of Zinc Ion in the Structure of Zinc−Finger Protein Is
Overcharging of zinc ion in the structure of zinc−finger protein is needed for DNA binding stability Ly H. Nguyen,z Tuyen T. Tran,z Truong Thi Ngoc Lien,x Mai Hong Hanh,z and Toan T. Nguyen∗,z zKey Laboratory for Multiscale Simulations of Complex Systems, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai street, Thanh Xuan district, Hanoi, Vietnam xHanoi University of Science and Technology, 1 Dai Co Viet street, Bach Khoa, Hai Ba Trung district, Hanoi, Vietnam E-mail: [email protected],[email protected] Running header Zinc−finger overcharging arXiv:1911.10452v2 [q-bio.BM] 22 Feb 2020 1 Abstract Zinc finger structure, where a Zn2+ ion binds to four 4 cysteines or histidines in a tetrahedral structure, is a very common motif of nucleic acid−binding proteins. The corresponding interaction model is present in 3% of the genes in human genome. As a result, zinc−finger has been extremely useful in various therapeutic and research capacities, and in biotechnology. In stable configuration of zinc−finger, the cysteine amino acids are deprotonated and become negatively charged. Thus, the Zn2+ ion is overscreened by four cysteine charges (overcharged). Whether this overcharged config- uration is also stable when such a negatively charged zinc−finger binds to a negatively charged DNA molecule is unknown. We investigated how the deprotonated state of cysteine influences its structure, dynamics, and function in binding to DNA molecules by using an all−atom molecular dynamics simulation up to microsecond range of an androgen receptor protein dimer. Our results showed that the deprotonated state of cysteine residues is essential for mechanical stabilization of the functional, folded con- formation. -
The Structure and Function of Large Biological Molecules 5
The Structure and Function of Large Biological Molecules 5 Figure 5.1 Why is the structure of a protein important for its function? KEY CONCEPTS The Molecules of Life Given the rich complexity of life on Earth, it might surprise you that the most 5.1 Macromolecules are polymers, built from monomers important large molecules found in all living things—from bacteria to elephants— can be sorted into just four main classes: carbohydrates, lipids, proteins, and nucleic 5.2 Carbohydrates serve as fuel acids. On the molecular scale, members of three of these classes—carbohydrates, and building material proteins, and nucleic acids—are huge and are therefore called macromolecules. 5.3 Lipids are a diverse group of For example, a protein may consist of thousands of atoms that form a molecular hydrophobic molecules colossus with a mass well over 100,000 daltons. Considering the size and complexity 5.4 Proteins include a diversity of of macromolecules, it is noteworthy that biochemists have determined the detailed structures, resulting in a wide structure of so many of them. The image in Figure 5.1 is a molecular model of a range of functions protein called alcohol dehydrogenase, which breaks down alcohol in the body. 5.5 Nucleic acids store, transmit, The architecture of a large biological molecule plays an essential role in its and help express hereditary function. Like water and simple organic molecules, large biological molecules information exhibit unique emergent properties arising from the orderly arrangement of their 5.6 Genomics and proteomics have atoms. In this chapter, we’ll first consider how macromolecules are built. -
A New C2H 2 Zinc Finger Protein and a C2C2 Steroid Receptor-Like Component
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Proteins that bind to Drosophila chorion cis-regulatory elements: A new C2H 2 zinc finger protein and a C2C2 steroid receptor-like component Martin J. Shea, 1 Dennis L. King, 1 Michael J. Conboy, 2 Brian D. Mariani, 3 and Fotis C. Kafatos 1,3 ~Department of Cellular and Developmental Biology, Harvard University Biological Laboratories, Cambridge, Massachusetts 02138 USA; ZJefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 USA; 3Institute of Molecular Biology and Biotechnology, Research Center of Crete, and Department of Biology, University of Crete, Heraklion 711 10, Crete, Greece Gel mobility-shift assays have been used to identify proteins that bind specifically to the promoter region of the Drosophila s15 chorion gene. These proteins are present in nuclear extracts of ovarian follicles, the tissue where s15 is expressed during development, and bind to specific elements of the promoter that have been shown by transformation analysis to be important for in vivo expression. The DNA binding specificity has been used for molecular cloning of two components from expression cDNA libraries and for their tentative identification with specific DNA-binding proteins of the nuclear extracts. The mRNAs for both of these components, CF1 and CF2, are differentially enriched in the follicles. DNA sequence analysis suggests that both CF1 and CF2 are novel Drosophila transcription factors. CF2 is a member of the C2H2 family of zinc finger proteins, whereas CF1 is a member of the family of steroid hormone receptors. The putative DNA-binding domain of CF1 is highly similar to the corresponding domains of certain vertebrate hormone receptors and recognizes a region of DNA with similar, hyphenated palindromic sequences. -
Introduction to Protein Structure Prediction
Introduction to Protein Structure Prediction BMI/CS 776 www.biostat.wisc.edu/bmi776/ Colin Dewey [email protected] Spring 2012 The Protein Folding Problem • we know that the function of a protein is determined in large part by its 3D shape (fold, conformation) • can we predict the 3D shape of a protein given only its amino-acid sequence? Protein Architecture • proteins are polymers consisting of amino acids linked by peptide bonds • each amino acid consists of – a central carbon atom (alpha-carbon) – an amino group, NH2 – a carboxyl group, COOH – a side chain • differences in side chains distinguish different amino acids Amino Acids and Peptide Bonds amino side carboxyl group chain group α carbon (common reference point for coordinates of a structure) Amino Acid Side Chains side chains vary in – shape – size – charge – polarity What Determines Conformation? • in general, the amino-acid sequence of a protein determines the 3D shape of a protein [Anfinsen et al., 1950s] • but some qualifications – all proteins can be denatured – some proteins are inherently disordered (i.e. lack a regular structure) – some proteins get folding help from chaperones – there are various mechanisms through which the conformation of a protein can be changed in vivo – post-translational modifications such as phosphorylation – prions – etc. What Determines Conformation? • Which physical properties of the protein determine its fold? – rigidity of the protein backbone – interactions among amino acids, including • electrostatic interactions • van der Waals