PARP13 Regulates Cellular Mrna Post-Transcriptionally and Functions As a Pro-Apoptotic Factor by Destabilizing TRAILR4 Transcript
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections
viruses Review Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections Zamaneh Hajikhezri 1, Mahmoud Darweesh 1,2, Göran Akusjärvi 1 and Tanel Punga 1,* 1 Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; [email protected] (Z.H.); [email protected] (M.D.); [email protected] (G.A.) 2 Department of Microbiology and Immunology, Al-Azhr University, Assiut 11651, Egypt * Correspondence: [email protected]; Tel.: +46-733-203-095 Received: 28 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection. Keywords: human adenovirus; zinc finger protein; CCCH-type; ZC3H11A; MKRN1; U2AF1 1. Zinc Finger Proteins Zinc finger proteins are a big family of proteins with characteristic zinc finger (ZnF) domains present in the protein sequence. The ZnF domains consists of various ZnF motifs, which are short 30–100 amino acid sequences, coordinating zinc ions (Zn2+). -
Engineering Zinc-Finger Protein and CRISPR/Cas9 Constructs to Model the Epigenetic and Transcriptional Phenomena That Underlie Cocaine-Related Behaviors
Engineering zinc-finger protein and CRISPR/Cas9 constructs to model the epigenetic and transcriptional phenomena that underlie cocaine-related behaviors Hamilton PJ, Heller EA, Ortiz Torres I, Burek DD, Lombroso SI, Pirpinias ST, Neve RL, Nestler EJ Multiple studies have implicated genome-wide epigenetic remodeling events in brain reward regions following drug exposure. However, only recently has it become possible to target a given type of epigenetic remodeling to a single gene of interest, in order to probe the causal relationship between such regulation and neuropsychiatric disease (Heller et al., Nat Neurosci, 2014). Our group has successfully utilized synthetic zinc- finger proteins (ZFPs), fused to either the transcriptional repressor, G9a, that promotes histone methylation or the transcriptional activator, p65, that promotes histone acetylation, to determine the behavioral effects of targeted in vivo epigenetic reprogramming in a locus-specific and cell-type specific manner. Given the success of our ZFP approaches, we have broadened our technical repertoire to include the more novel and flexible CRISPR/Cas9 technology. We designed guide RNAs to target nuclease-dead Cas9 (dCas9) fused to effector domains to the fosB gene locus, a locus heavily implicated in the pathogenesis of drug abuse. We observe that dCas9 fused to the transcriptional activator, VP64, or the transcriptional repressor, KRAB, and targeted to specific sites in the fosB promoter is sufficient to regulate FosB and ΔFosB mRNA levels, in both cultured cells and in the nucleus accumbens (NAc) of mice receiving viral delivery of CRISPR constructs. Next, we designed a fusion construct linking the dCas9 moiety to a pseudo-phosphorylated isoform of the transcription factor CREB (dCas9 CREB(S133D)). -
TRAF5, a Novel Tumor Necrosis Factor Receptor-Associated Factor Family
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 9437-9442, September 1996 Biochemistry TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling (signal transduction/protein-protein interaction/yeast two-hybrid system) TAKAoMI ISHIDA*, TADASHI ToJo*, TSUTOMU AOKI*, NORIHIKO KOBAYASHI*, TSUKASA OHISHI*, TOSHIKI WATANABEt, TADASHI YAMAMOTO*, AND JUN-ICHIRO INOUE*t Departments of *Oncology and tPathology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan Communicated by David Baltimore, Massachusetts Institute of Technology, Cambridge, MA, May 22, 1996 (received for review March 8, 1996) ABSTRACT Signals emanating from CD40 play crucial called a death domain, suggesting that these receptors could roles in B-cell function. To identify molecules that transduce have either common or similar signaling mechanisms (13). CD40 signalings, we have used the yeast two-hybrid system to Biochemical purification of receptor-associated proteins or the clone cDNAs encoding proteins that bind the cytoplasmic tail recently developed cDNA cloning system that uses yeast of CD40. A cDNA encoding a putative signal transducer genetic selection led to the discovery of two groups of signal protein, designated TRAF5, has been molecularly cloned. transducer molecules. Members of the first group are proteins TRAF5 has a tumor necrosis factor receptor-associated factor with a TRAF domain for TNFR2 and CD40 such as TRAF1, (TRAF) domain in its carboxyl terminus and is most homol- TRAF2 (17), and TRAF3, also known as CD40bp, LAP-1, or ogous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, CRAF1 or CD40 receptor-associated factor (18-20). -
Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis Vinifera L.): Insights Into the Roles in the Pollen Development Regulation
G C A T T A C G G C A T genes Article Comprehensive Genome-Wide Exploration of C2H2 Zinc Finger Family in Grapevine (Vitis vinifera L.): Insights into the Roles in the Pollen Development Regulation Oscar Arrey-Salas 1,* , José Carlos Caris-Maldonado 2, Bairon Hernández-Rojas 3 and Enrique Gonzalez 1 1 Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, 3460000 Talca, Chile; [email protected] 2 Center for Research and Innovation (CRI), Viña Concha y Toro, Ruta k-650 km 10, 3550000 Pencahue, Chile; [email protected] 3 Ph.D Program in Sciences Mention in Modeling of Chemical and Biological Systems, Faculty of Engineering, University of Talca, Calle 1 Poniente, 1141, 3462227 Talca, Chile; [email protected] * Correspondence: [email protected] Abstract: Some C2H2 zinc-finger proteins (ZFP) transcription factors are involved in the development of pollen in plants. In grapevine (Vitis vinifera L.), it has been suggested that abnormalities in pollen development lead to the phenomenon called parthenocarpy that occurs in some varieties of this cultivar. At present, a network involving several transcription factors types has been revealed and key roles have been assigned to members of the C2H2 zinc-finger proteins (ZFP) family in model plants. However, particularities of the regulatory mechanisms controlling pollen formation in grapevine Citation: Arrey-Salas, O.; remain unknown. In order to gain insight into the participation of ZFPs in grapevine gametophyte Caris-Maldonado, J.C.; development, we performed a genome-wide identification and characterization of genes encoding Hernández-Rojas, B.; Gonzalez, E. ZFP (VviZFP family). -
FLIP and the Death Effector Domain Family
Oncogene (2008) 27, 6216–6227 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc REVIEW FLIP and the death effector domain family JW Yu and Y Shi Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA Death effector domains (DEDs) are protein interaction and stress that impinge on the mitochondria or modules found in a number of proteins known to regulate ‘extrinsically’ from extracellular ligands that activate apoptosis from death receptors. The core DED family death receptors at the cell surface. In either scenario, members that orchestrate programmed cell death from each pathway critically relies on the action of a family of death receptors include the adaptor protein FADD, the cysteine proteases known as caspases to initiate and initiator caspases procaspases-8 and -10 and the regulatory execute the cell death process through a two-step protein c-FLIP. Through homotypic DED interactions, cascade (Riedl and Shi, 2004). In the apoptotic these proteins assemble into the death-inducingsignaling proteolytic cascade, the initiator caspases (caspases-2, complex (DISC) to regulate initiator caspase activation -8, -9 and -10) cleave and consequently activate the and launch the apoptotic proteolytic cascade. A consider- effector caspases (caspases-3, -6 and -7), and the effector able body of evidence, however, is revealingthat the same caspases in turn cleave a large array of substrates to core group of DED-containing proteins also paradoxically dismantle and package the cell into apoptotic bodies. promotes survival and proliferation in lymphocytes and Activation of initiator caspases for both the intrinsic possibly other cell types. -
A New C2H 2 Zinc Finger Protein and a C2C2 Steroid Receptor-Like Component
Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press Proteins that bind to Drosophila chorion cis-regulatory elements: A new C2H 2 zinc finger protein and a C2C2 steroid receptor-like component Martin J. Shea, 1 Dennis L. King, 1 Michael J. Conboy, 2 Brian D. Mariani, 3 and Fotis C. Kafatos 1,3 ~Department of Cellular and Developmental Biology, Harvard University Biological Laboratories, Cambridge, Massachusetts 02138 USA; ZJefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 USA; 3Institute of Molecular Biology and Biotechnology, Research Center of Crete, and Department of Biology, University of Crete, Heraklion 711 10, Crete, Greece Gel mobility-shift assays have been used to identify proteins that bind specifically to the promoter region of the Drosophila s15 chorion gene. These proteins are present in nuclear extracts of ovarian follicles, the tissue where s15 is expressed during development, and bind to specific elements of the promoter that have been shown by transformation analysis to be important for in vivo expression. The DNA binding specificity has been used for molecular cloning of two components from expression cDNA libraries and for their tentative identification with specific DNA-binding proteins of the nuclear extracts. The mRNAs for both of these components, CF1 and CF2, are differentially enriched in the follicles. DNA sequence analysis suggests that both CF1 and CF2 are novel Drosophila transcription factors. CF2 is a member of the C2H2 family of zinc finger proteins, whereas CF1 is a member of the family of steroid hormone receptors. The putative DNA-binding domain of CF1 is highly similar to the corresponding domains of certain vertebrate hormone receptors and recognizes a region of DNA with similar, hyphenated palindromic sequences. -
Zinc Finger Proteins: Getting a Grip On
Zinc finger proteins: getting a grip on RNA Raymond S Brown C2H2 (Cys-Cys-His-His motif) zinc finger proteins are members others, such as hZFP100 (C2H2) [11] and tristetraprolin of a large superfamily of nucleic-acid-binding proteins in TTP (CCCH) [12], are involved in histone pre-mRNA eukaryotes. On the basis of NMR and X-ray structures, we processing and the degradation of tumor necrosis factor know that DNA sequence recognition involves a short a helix a mRNA, respectively. In addition, there are reports of bound to the major groove. Exactly how some zinc finger dual RNA/DNA-binding proteins, such as the thyroid proteins bind to double-stranded RNA has been a complete hormone receptor (CCCC) [13] and the trypanosome mystery for over two decades. This has been resolved by the poly-zinc finger PZFP1 pre-mRNA processing protein long-awaited crystal structure of part of the TFIIIA–5S RNA (CCHC) [14]. Whether their interactions with RNA are complex. A comparison can be made with identical fingers in a based on the same mechanisms as protein–DNA binding TFIIIA–DNA structure. Additionally, the NMR structure of is an intriguing structural question that has remained TIS11d bound to an AU-rich element reveals the molecular unanswered until now. details of the interaction between CCCH fingers and single-stranded RNA. Together, these results contrast the What follows is an attempt to expose both similarities different ways that zinc finger proteins bind with high and differences between C2H2 zinc finger protein bind- specificity to their RNA targets. ing to RNA and DNA based on recent X-ray structures. -
Exogenous PPAR 2 but Not PPAR 1 Reactivates Adipogenesis
Downloaded from genesdev.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION ␥ differential isoform function. Rationally engineered PPAR knockdown by transcription factors potentially provide a powerful tool engineered transcription for targeted regulation of endogenous genes by combin- ing a functional transcription regulatory domain with a factors: exogenous PPAR␥2 customized DNA binding domain that can bind to a spe- but not PPAR␥1 cific sequence within the target gene. C2H2 zinc finger proteins (ZFPs) can be engineered to bind with high reactivates adipogenesis specificity to wide a diversity of DNA sequences (Des- jarlais and Berg 1992; Choo and Klug 1994; Jamieson et Delin Ren,1 Trevor N. Collingwood,2 al. 1994; Rebar and Pabo 1994; Greisman and Pabo 1997). Edward J. Rebar,2 Alan P. Wolffe,2 Previous studies have demonstrated the utility of both and Heidi S. Camp1,3 engineered activator- and repressor-ZFPs in the regula- tion of endogenous chromosomal loci (Bartsevich and 1Department of Molecular Science and Technology, Pfizer Juliano 2000; Beerli et al. 2000; Zhang et al. 2000; Liu et Global and Research Development, Ann Arbor, Michigan al. 2001). Our goal for this study was to selectively in- 48105, USA; 2Sangamo BioSciences Inc., Pt. Richmond, hibit expression of the PPAR␥2 isoform in the adipo- California 94804, USA genic mouse 3T3-L1 cell line by utilizing engineered zinc finger repressor proteins. To determine functional differences between the two splice variants of PPAR␥ (␥1 and ␥2), we sought to se- Results and Discussion ␥ lectively repress 2 expression by targeting engineered The mouse PPAR␥ gene spans >105 kb (Zhu et al. -
Purification, Crystallization and Preliminary X-Ray Crystallographic Studies of RAIDD Death-Domain (DD)
Int. J. Mol. Sci. 2009, 10, 2501-2509; doi:10.3390/ijms10062501 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Purification, Crystallization and Preliminary X-ray Crystallographic Studies of RAIDD Death-Domain (DD) Tae-ho Jang and Hyun Ho Park * Department of Biochemistry, School of Biotechnology at Yeungnam University, Gyeong-san, Korea * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +1-82-53-810-3045; Fax: +1-82-53-810-4769 Received: 7 April 2009; in revised form: 26 May 2009 / Accepted: 1 June 2009 / Published: 3 June 2009 Abstract: Caspase-2 activation by formation of PIDDosome is critical for genotoxic stress induced apoptosis. PIDDosome is composed of three proteins, RAIDD, PIDD, and Caspase-2. RAIDD is an adaptor protein containing an N-terminal Caspase-Recruiting- Domain (CARD) and a C-terminal Death-Domain (DD). Its interactions with Caspase-2 and PIDD through CARD and DD respectively and formation of PIDDosome are important for the activation of Caspase-2. RAIDD DD cloned into pET26b vector was expressed in E. coli cells and purified by nickel affinity chromatography and gel filtration. Although it has been known that the most DDs are not soluble in physiological condition, RAIDD DD was soluble and interacts tightly with PIDD DD in physiological condition. The purified RAIDD DD alone has been crystallized. Crystals are trigonal and belong to space group P3121 (or its enantiomorph P3221) with unit-cell parameters a = 56.3, b = 56.3, c = 64.9 Å and γ = 120°. -
Nuclear Factor- B-Inducible Death Effector Domain-Containing Protein
THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 276, No. 28, Issue of July 13, pp. 26398–26404, 2001 © 2001 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Nuclear Factor-B-inducible Death Effector Domain-containing Protein Suppresses Tumor Necrosis Factor-mediated Apoptosis by Inhibiting Caspase-8 Activity* Received for publication, March 19, 2001, and in revised form, May 8, 2001 Published, JBC Papers in Press, May 9, 2001, DOI 10.1074/jbc.M102464200 Zongbing You‡, Hongjiao Ouyang‡§, Dennis Lopatin¶, Peter J. Polverʈ, and Cun-Yu Wang‡** From the ‡Laboratory of Molecular Signaling and Apoptosis, the Department of Biologic and Materials Sciences, School of Dentistry, Program in Cellular and Molecular Biology, and Comprehensive Cancer Center, the §Department of Cardiology, Restorative Sciences and Endodontics, and the ¶Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109 and the ʈSchool of Dentistry, University of Minnesota, Minneapolis, Minnesota 55455 Activation of the transcription factor nuclear fac- ing pathway or trigger the caspase cascade by interacting with tor-B (NF-B) has been found to play an essential role FADD (Fas-associated death domain protein) in the absence of in the inhibition of tumor necrosis factor (TNF)-medi- NF-B activation (1–3). FADD recruits and activates ated apoptosis. NF-B regulates several antiapoptotic caspase-8. Both caspase-8 and FADD contain death effector molecules including inhibitors of apoptosis, Bcl-2 family domains (DED) that were found to play a critical role for the proteins (A1 and Bcl-XL), and IEX-IL. Here we report protein-protein interaction and caspase activation (4, 5). -
The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation
ANRV306-IY25-19 ARI 11 February 2007 12:51 The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation Hyun Ho Park,1 Yu-Chih Lo,1 Su-Chang Lin,1 Liwei Wang,1 Jin Kuk Yang,1,2 and Hao Wu1 1Department of Biochemistry, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021; email: [email protected] 2Department of Chemistry, Soongsil University, Seoul 156-743, Korea Annu. Rev. Immunol. 2007. 25:561–86 Key Words First published online as a Review in Advance on death domain (DD), death effector domain (DED), tandem DED, January 2, 2007 caspase recruitment domain (CARD), pyrin domain (PYD), crystal The Annual Review of Immunology is online at structure, NMR structure immunol.annualreviews.org This article’s doi: Abstract 10.1146/annurev.immunol.25.022106.141656 The death domain (DD) superfamily comprising the death domain Copyright c 2007 by Annual Reviews. (DD) subfamily, the death effector domain (DED) subfamily, the Annu. Rev. Immunol. 2007.25:561-586. Downloaded from arjournals.annualreviews.org by CORNELL UNIVERSITY MEDICAL COLLEGE on 03/29/07. For personal use only. All rights reserved caspase recruitment domain (CARD) subfamily, and the pyrin do- 0732-0582/07/0423-0561$20.00 main (PYD) subfamily is one of the largest domain superfamilies. By mediating homotypic interactions within each domain subfam- ily, these proteins play important roles in the assembly and activation of apoptotic and inflammatory complexes. In this chapter, we review the molecular complexes assembled by these proteins, the structural and biochemical features of these domains, and the molecular in- teractions mediated by them. -
Identification of a Zinc Finger Protein Whose Subcellular Distribution Is Regulated by Serum and Nerve Growth Factor
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 10705–10710, September 1999 Cell Biology Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor ALEXANDRA CHITTKA*† AND MOSES V. CHAO*‡ *Cell Biology Program, Weill Graduate School of Cornell University Medical College, New York, NY 10021, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 Edited by Michael V. L. Bennett, Albert Einstein College of Medicine, Woods Hole, MA, and approved July 13, 1999 (received for review March 24, 1999) ABSTRACT A subclass of zinc finger proteins containing a 18). Here, we describe the structural features of SC-1, its asso- unique protein motif called the positive regulatory (PR) domain ciation with p75 neurotrophin receptor, and its subcellular local- has been described. The members include the PRDI-BF1͞ ization. We find the distribution of SC-1 is strongly regulated by Blimp-1 protein, the Caenorhabditis elegans egl-43 and EVI1 gene NGF binding to the p75 receptor and by growth conditions. products, and the retinoblastoma interacting protein RIZ. Here Interestingly, the localization of SC-1 is not under control of NGF we describe a member of this family, SC-1, that exhibits several binding to the TrkA receptor or by other neurotrophins, such as distinctive features. First, SC-1 interacts with the p75 neurotro- brain-derived neurotrophic factor and neurotrophin 3. These phin receptor and is redistributed from the cytoplasm to the observations define SC-1 as a protein that is differentially con- nucleus after nerve growth factor (NGF) treatment of trans- trolled by neurotrophin and serum conditions.