Inactive Conformation Enhances Binding Function in Physiological Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Inactive Conformation Enhances Binding Function in Physiological Conditions Inactive conformation enhances binding function in physiological conditions Olga Yakovenkoa, Veronika Tchesnokovab, Evgeni V. Sokurenkob, and Wendy E. Thomasa,1 aDepartment of Bioengineering, University of Washington, Seattle, WA 98195; and bDepartment of Microbiology, University of Washington, Seattle, WA 98195 Edited by Timothy A. Springer, Harvard Medical School, Boston, MA, and approved July 8, 2015 (received for review March 10, 2015) Many receptors display conformational flexibility, in which the processes, where the kinetics, or rates, of individual steps are more binding pocket has an open inactive conformation in the absence important than overall affinity because the process does not reach of ligand and a tight active conformation when bound to ligand. equilibrium. An example of a nonequilibrium process is cell ad- Here we study the bacterial adhesin FimH to address the role of hesion. Because adhesive receptors bind to ligands that are an- the inactive conformation of the pocket for initiating binding by chored to other cells or surfaces, the adhesive bonds are subjected comparing two variants: a wild-type FimH variant that is in the to tensile mechanical force due to cytoskeletal contraction, fluid– inactive state when not bound to its target mannose, and an flow-induced drag forces, or other stresses. This tensile force can engineered activated variant that is always in the active state. Not only be applied between receptor and ligand after the bond forms, surprisingly, activated FimH has a longer lifetime and higher so binding and unbinding occur in different conditions, and are affinity, and bacteria expressing activated FimH bound better in thus not occurring in a reversible manner as required to reach static conditions. However, bacteria expressing wild-type FimH equilibrium. Many adhesive receptors form catch bonds (15–19), bound better in flow. Wild-type and activated FimH demonstrated which are bonds that are activated by tensile force to become similar mechanical strength, likely because mechanical force in- longer lived, so the influence of force on this binding process is duces the active state in wild-type FimH. However, wild-type FimH nontrivial. The functional advantage of the inactive state in this displayed a faster bond association rate than activated FimH. nonequilibrium process is not known. Moreover, the ability of different FimH variants to mediate The Escherichia coli adhesin FimH is a model for addressing the BIOCHEMISTRY adhesion in flow reflected the fraction of FimH in the inactive role of the inactive state in the nonequilibrium process of cell state. These results demonstrate a new model for ligand-associ- adhesion, because FimH forms catch bonds that involve allosteric ated conformational changes that we call the kinetic-selection regulation (19, 20), like many other adhesive proteins (21–24) and model, in which ligand-binding selects the faster-binding inactive the structural basis of allostery in FimH is well understood (20). state and then induces the active state. This model predicts that in The isolated mannose-binding lectin domain has an elongated physiological conditions for cell adhesion, mechanical force will regulatory region and a tightly closed binding site that binds drive a nonequilibrium cycle that uses the fast binding rate of the α-methyl-mannose (aMM) with an affinity of 1–2 μM(25,26)and inactive state and slow unbinding rate of the active state, for a mannosylated BSA (man-BSA) with a lifetime of many minutes higher effective affinity than is possible at equilibrium. (20). However, FimH is normally incorporated into fimbrial ad- hesive organelles, and in this state, the naturally predominant conformational dynamics | receptor | ligand | adhesion | mechanical force variants such as K12 have a compressed regulatory region and a mannose-binding pocket that is 3 Å wider because the gatelike t is now known that few proteins recognize ligands through a lock clamp loop is open (20). We refer to this as the inactive state Iand key mechanism, in which the binding pocket is in essentially the same conformation whether or not ligand is bound. Instead, the Significance conformation of the binding pocket is usually dynamic. Confor- mational dynamics have many functions for receptors as well as enzymes, so for simplicity, we will use the term ligand to describe The binding pocket of a receptor often switches between two “ ” substrates and products as well as molecules that are not changed conformations, with the tight active conformation binding ligand “ ” by binding. For allosteric proteins, an obvious function of confor- with higher affinity than the loose inactive one. We demonstrate mational changes in the pocket is to allow regulation of ligand here that in physiologically relevant nonequilibrium conditions, binding by an allosteric effector. For other proteins, flexibility in stabilizing the active conformation actually reduces binding. We the binding pocket allows proteins to bind structurally distinct li- furthermore show that ligand binds most rapidly to the inactive conformation, but detaches most slowly from the active con- gands (1), which may in turn facilitate evolution of new structures formation, so that each conformation provides an advantage and functions (2, 3). In many cases, the inactive conformation of to binding. Mechanical force regulates many adhesive re- the pocket is relatively loose, and the active conformation tightens ceptors in a way that creates a nonequilibrium cycle that would around the ligand, often due to the closing of a hinge (4) between take advantage of the best property of each conformation, two domains, or loops that are described as a gate (e.g., refs. 5–7) – creating a higher effective affinity than either state alone. This or a lid (e.g., refs. 8 11) because they close over the ligand in provides new insights into the importance of both the inactive binding pocket. The ability of the pocket to close around different state and nonequilibrium conditions. ligands can contribute to specificity (5). Switching to the inactive state of the receptor dramatically increases the dissociation rate, so Author contributions: O.Y., V.T., and W.E.T. designed research; O.Y. and V.T. performed pocket dynamics controls the residence time of ligands (4, 12), and research; O.Y., V.T., and W.E.T. analyzed data; and O.Y., E.V.S., and W.E.T. wrote the thus the catalytic rate of most enzymes (3). The importance of the paper. inactive state to association rates is less clear; inactive states have The authors declare no conflict of interest. been shown have lower (4, 12), similar (13), or higher (14) associ- This article is a PNAS Direct Submission. ation rates relative to the active state, and the functional importance Freely available online through the PNAS open access option. of the differences is unclear. 1To whom correspondence should be addressed. Email: [email protected]. We hypothesize that inactive states can have faster ligand as- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. sociation rates, and that this is important for nonequilibrium 1073/pnas.1503160112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1503160112 PNAS Early Edition | 1of6 Downloaded by guest on September 24, 2021 because K12 has an affinity of 300 μM for aMM (25). Most bonds between K12 and man-BSA last under 1 s, and a small fraction are much longer lived, demonstrating that K12 can bind to mannose in both the inactive and active states (20). The structure of the short-lived inactive bound state is not known, but mutational studies suggest weak, or sequential, allosteric coupling, in which the clamp loop closes transiently around mannose and the regu- latory region remains compressed (27). FimH forms catch bonds because mechanical force induces the elongated state of the reg- ulatory region, which stabilizes the closed form of the clamp loop (20, 28). Many variants of FimH have been either engineered or discovered in clinical isolates that increase binding to mannose in Fig. 1. FimH-mediated E. coli binding to man-BSA in flow. (A) Number of static conditions (27, 29, 30) by destabilizing the inactive state E. coli bound to a man-BSA surface after 5 min injection of free-floating relative to the active state (27). Evolution selects against these bacteria at the indicated shear stress. (B) Percent of E. coli that remained bound or stationary on a man-BSA surface after 30 s at the indicated shear mutations (30, 31), which strongly suggests that the inactive state stress. (C) Initial attachment rate of E. coli on a man-BSA surface at the in- provides a functional advantage in vivo, but the mechanism for dicated shear stress. In A and C, data were normalized to the number or this advantage remains unknown. attachment rate of K12 at 0.07 Pa. All panels show the mean and SD of two Here we compare FimH variants to determine whether and how experiments on different days. the inactive state provides a functional advantage to cell adhesion in nonequilibrium conditions. We refer to K12 as wild-type FimH. The FocH variant has the same affinity for aMM as the isolated both strains of bacteria to the surface at 0.035 Pa and then in- lectin domain (25), so we refer to FocH as activated FimH. Al- creased flow stepwise while tracking bound bacteria to measure though activated FocH mediated more bacterial attachment than movement or detachment (Fig. 1B). Even at 1 Pa, the highest did wild-type K12 at low flow rates, it mediated less attachment at shear stress studied in Fig. 1A, both strains remained bound high flow rates. Indeed, for over a dozen FimH variants, the without even moving. Indeed, all bacteria remained bound through number of bacteria binding at high flow was inversely proportional 10 Pa, and the fraction that moved at 3 and 10 Pa was similar for to the amount of FimH in the active state, as determined by a the two FimH variants.
Recommended publications
  • Structural and Functional Characterization of the Fimh Adhesin of Uropathogenic Escherichia Coli and Its Novel Applications
    Open Access Journal of Bacteriology and Mycology Research Article Structural and Functional Characterization of the FimH Adhesin of Uropathogenic Escherichia coli and Its Novel Applications Neamati F1, Moniri R2*, Khorshidi A1 and Saffari M1 Abstract 1Department of Microbiology and Immunology, School Type 1 fimbriae are responsible for bacterial pathogenicity and biofilm of Medicine, Kashan University of Medical Sciences, production, which are important virulence factors in uropathogenic Escherichia Kashan, Iran coli strains. Many articles are published on FimH, but each examined a specific 2Department of Microbiology, Faculty of Medicine, aspect of this protein. The current review study aimed at focusing on structure Kashan University of Medical Sciences, Qutb Ravandi and conformational changes and describing efforts to use this protein in novel Boulevard, Kashan, Iran potential treatments for urinary tract infections, typing methods, and expression *Corresponding author: Moniri R, Department of systems. The current study was the first review that briefly and effectively Microbiology, Faculty of Medicine, Kashan University of examined issues related to FimH adhesin. Medical Sciences, Qutb Ravandi Boulevard, Kashan, Iran Keywords: Uropathogenic E. coli; FimH Adhesion; FimH Typing; Received: June 05, 2020; Accepted: July 03, 2020; Conformation Switch; FimH Antagonists Published: July 10, 2020 Abbreviations FimH proteins play important roles in UPEC pathogenicity and the formation of bacterial biofilms [7]. FimH binds to mannosylated UTIs: Urinary Tract Infections; UPEC: Uropathogenic E. uroplakin proteins in the bladder lumen and invades into the Coli; IBCs: Intracellular Bacterial Communities; QIR: Quiescent superficial umbrella cells [8]. After the invasion, UPEC is expelled out Intracellular Reservoir; LD: Mannose-Binding Lectin; PD: Fimbria- of the cell in a TLR4 dependent process, or escape into the cytoplasm Incorporating Pilin; MBP: Mannose-Binding Pocket; LIBS: Ligand- [9].
    [Show full text]
  • Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy
    International Journal of Molecular Sciences Review Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy Magdalena Podlacha 1 , Łukasz Grabowski 2 , Katarzyna Kosznik-Kaw´snicka 2 , Karolina Zdrojewska 1 , Małgorzata Stasiłoj´c 1 , Grzegorz W˛egrzyn 1 and Alicja W˛egrzyn 2,* 1 Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; [email protected] (M.P.); [email protected] (K.Z.); [email protected] (M.S.); [email protected] (G.W.) 2 Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdansk, Poland; [email protected] (Ł.G.); [email protected] (K.K.-K.) * Correspondence: [email protected]; Tel.: +48-58-523-6024 Abstract: Bacteriophages are viruses infecting bacterial cells. Since there is a lack of specific receptors for bacteriophages on eukaryotic cells, these viruses were for a long time considered to be neutral to animals and humans. However, studies of recent years provided clear evidence that bacteriophages can interact with eukaryotic cells, significantly influencing the functions of tissues, organs, and systems of mammals, including humans. In this review article, we summarize and discuss recent discoveries in the field of interactions of phages with animal and human organisms. Possibilities of penetration of bacteriophages into eukaryotic cells, tissues, and organs are discussed, and evidence of the effects of phages on functions of the immune system, respiratory system, central nervous system, gastrointestinal system, urinary tract, and reproductive system are presented and discussed.
    [Show full text]
  • HOW BLUE WATERS IS AIDING the FIGHT AGAINST SEPSIS Allocation: Illinois/520 Knh PI: Rafael C
    BLUE WATERS ANNUAL REPORT 2019 GA HOW BLUE WATERS IS AIDING THE FIGHT AGAINST SEPSIS Allocation: Illinois/520 Knh PI: Rafael C. Bernardi1 TN 2 Collaborator: Hermann E. Gaub 1University of Illinois at Urbana–Champaign 2Ludwig–Maximilians–Universität BW EXECUTIVE SUMMARY to investigate with exquisite precision the mechanics of interac- Owing to their high occurrence in ever more common hos- tion between SdrG and Fgβ. SdrG is an SD-repeat protein G and pital-acquired infections, studying the mechanisms of infection is one of the adhesin proteins of Staphylococcus epidermidis. Fgβ by Staphylococcus epidermidis and Staphylococcus aureus is of is the human fibrinogen β and is a short peptide that is part of broad interest. These pathogens can frequently form biofilms on the human extracellular matrix. implants and medical devices and are commonly involved in sep- For SMD molecular dynamics simulations, the team uses Blue sis—the human body’s often deadly response to infections. Waters’ GPU nodes (XK) and the GPU-accelerated NAMD pack- Central to the formation of biofilms is very close interaction age. In a wide-sampling strategy, the team carried out hundreds between microbial surface proteins called adhesins and compo- of SMD runs for a total of over 50 microseconds of simulation. nents of the extracellular matrix of the host. The research team To characterize the coupling between the bacterial SdrG pro- uses Blue Waters to explore how the bond between staphylococ- tein and the Fgβ peptide, the team conducts SMD simulations cal adhesin and its human target can withstand forces that so far with constant velocity stretching at multiple pulling speeds.
    [Show full text]
  • Structure-Based Discovery of Glycomimetic Fmlh Ligands As Inhibitors of Bacterial Adhesion During Urinary Tract Infection
    Structure-based discovery of glycomimetic FmlH ligands as inhibitors of bacterial adhesion during urinary tract infection Vasilios Kalasa,b,c, Michael E. Hibbinga,b, Amarendar Reddy Maddiralac, Ryan Chuganic, Jerome S. Pinknera,b, Laurel K. Mydock-McGranec, Matt S. Conovera,b, James W. Janetkaa,c,1, and Scott J. Hultgrena,b,1 aCenter for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110; bDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; and cDepartment of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110 Edited by Roy Curtiss III, University of Florida, Gainesville, FL, and approved February 13, 2018 (received for review November 20, 2017) Treatment of bacterial infections is becoming a serious clinical tive antibiotic-sparing approaches to combat bacterial pathogens. challenge due to the global dissemination of multidrug antibiotic Recently, promising efforts have been made to target the virulence resistance, necessitating the search for alternative treatments to mechanisms that cause bacterial infection. These studies have disarm the virulence mechanisms underlying these infections. provided much-needed therapeutic alternatives, which simulta- Escherichia coli – Uropathogenic (UPEC) employs multiple chaperone neously reduce the burden of antibiotic resistance and minimize usher pathway pili tipped with adhesins with diverse receptor spec- disruption of gastrointestinal microbial communities that are ificities to colonize various host tissues and habitats. For example, beneficial to human health (16). UPEC F9 pili specifically bind galactose or N-acetylgalactosamine Uropathogenic Escherichia coli (UPEC) is the main etiological epitopes on the kidney and inflamed bladder. Using X-ray structure- guided methods, virtual screening, and multiplex ELISA arrays, we agent of UTIs, accounting for greater than 80% of community- rationally designed aryl galactosides and N-acetylgalactosaminosides acquired UTIs (17, 18).
    [Show full text]
  • Bacterial Virulence and Subversion of Host Defences Steven AR Webb1 and Charlene M Kahler2
    Available online http://ccforum.com/content/12/6/234 Review Bench-to-bedside review: Bacterial virulence and subversion of host defences Steven AR Webb1 and Charlene M Kahler2 1School of Medicine and Pharmacology and School of Population Health, University of Western Australia, Intensive Care Unit, Royal Perth Hospital, Wellington Street, Perth, Western Australia 6000, Australia 2School of Biomolecular, Biochemical and Chemical Science, Microbiology M502, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6909, Australia Corresponding author: Steven AR Webb, [email protected] Published: 10 November 2008 Critical Care 2008, 12:234 (doi:10.1186/cc7091) This article is online at http://ccforum.com/content/12/6/234 © 2008 BioMed Central Ltd Abstract problem of antibiotic resistance – a problem that ICUs both Bacterial pathogens possess an array of specific mechanisms that contribute to as well as suffer from [4]. Despite the rising confer virulence and the capacity to avoid host defence mecha- incidence of antibiotic resistance in many bacterial patho- nisms. Mechanisms of virulence are often mediated by the sub- gens, interest in antibiotic drug discovery by commercial version of normal aspects of host biology. In this way the pathogen entities is in decline [5]. modifies host function so as to promote the pathogen’s survival or proliferation. Such subversion is often mediated by the specific Bacterial virulence is ‘the ability to enter into, replicate within, interaction of bacterial effector molecules with host encoded proteins and other molecules. The importance of these mechanisms and persist at host sites that are inaccessible to commensal for bacterial pathogens that cause infections leading to severe species’ [6].
    [Show full text]
  • RTX Adhesins Are Key Bacterial Surface Megaproteins in the Formation of Biofilms
    RTX Adhesins are key bacterial surface megaproteins in the formation of biofilms Citation for published version (APA): Guo, S., Vance, T. D. R., Stevens, C. A., Voets, I. K., & Davies, P. L. (2019). RTX Adhesins are key bacterial surface megaproteins in the formation of biofilms. Trends in Microbiology, 27(5), 453-467. https://doi.org/10.1016/j.tim.2018.12.003 DOI: 10.1016/j.tim.2018.12.003 Document status and date: Published: 01/05/2019 Document Version: Author’s version before peer-review Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Fimh and Anti-Adhesive Therapeutics: a Disarming Strategy Against Uropathogens
    antibiotics Review FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens 1,2,3, 4, , 5, 6 Meysam Sarshar y , Payam Behzadi * y , Cecilia Ambrosi * , Carlo Zagaglia , Anna Teresa Palamara 1,5 and Daniela Scribano 6,7 1 Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (M.S.); [email protected] (A.T.P.) 2 Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy 3 Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran 4 Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran 5 IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy 6 Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; [email protected] (C.Z.); [email protected] (D.S.) 7 Dani Di Giò Foundation-Onlus, 00193 Rome, Italy * Correspondence: [email protected] (P.B.); [email protected] (C.A.) These authors contributed equally to this work. y Received: 30 June 2020; Accepted: 8 July 2020; Published: 10 July 2020 Abstract: Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives.
    [Show full text]
  • Folding Control in the Path of Type 5 Secretion
    toxins Review Folding Control in the Path of Type 5 Secretion Nathalie Dautin 1,2 1 Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France; [email protected] 2 Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France Abstract: The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis. Keywords: secretion; folding; autotransporter; type 5 secretion system; intimin; invasin; two-partner secretion; trimeric autotransporter Key Contribution: This short review describes the different factors preventing or promoting folding of proteins secreted by the T5SS. Citation: Dautin, N. Folding Control in the Path of Type 5 Secretion.
    [Show full text]
  • Inhibition of Bacterial Adhesion on Mice Enterocyte by the Hemagglutinin Pili Protein 12,8 Kda Klebsiella Pneumoniae Antibody
    THE JOURNAL OF TROPICAL LIFE SCIENCE OPEN ACCESS Freely available online VOL. 4, NO. 1, pp. 19-25, January, 2014 Inhibition of Bacterial Adhesion on Mice Enterocyte by the Hemagglutinin Pili Protein 12,8 kDa Klebsiella Pneumoniae Antibody Dini Agustina1*, Sumarno Retoprawiro2, Noorhamdani AS2 1Department of Microbiology, Faculty of Medicine, University of Jember, Jember, Indonesia 2Department of Microbiology, Faculty of Medicine, Brawijaya University, Malang, Indonesia ABSTRACT Klebsiella pneumoniae as one of the most common causes of Ventilator Associated Pneumoniae is also the second most common cause of both community and hospital acquired gram negative bloodstream infections. The process of bacterial infection begins with bacterial adhesion to the host cell mediated by pili or outer membrane protein. There has not been any reported research on the hemagglutinin pili protein of K. pneumoniae as adhesion factors in VAP cases. This study was conducted in order to determine the hemagglutinin pili protein of K. pneumoniae, polyclonal antibody produced from pili protein immunization, and its ability to inhibit K. pneumoniae adhesion in mice enterocytes in VAP cases. Adhesion inhibition test used HA antibody with the implementation of dose dilutions of 1/100, 1/200, 1/400, 1/800, 1/1600, 1/3200 and 0 (control); while the immunocytochemistry test used HA pili protein with the implementation of dose dilutions of 1/10000, 1/20000, 1/40000, 1/80000, 1/160000, 1/320000 and 0 (control). Hemagglutinin pili protein was found in K. pneumoniae having MW 12.8 kDa. Pearson correlation analysis of the adhesion test showed that there was a significant correlation between antibody dilution titer with bacterial adhesion (p= 0.032, R= -0.797).
    [Show full text]
  • Type V Secretion Systems: an Overview of Passenger Domain Functions
    fmicb-10-01163 May 31, 2019 Time: 10:36 # 1 REVIEW published: 31 May 2019 doi: 10.3389/fmicb.2019.01163 Type V Secretion Systems: An Overview of Passenger Domain Functions Ina Meuskens, Athanasios Saragliadis, Jack C. Leo and Dirk Linke* Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a b-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V Edited by: secretion systems can be further separated into sub-groups termed type Va through Eric Cascales, Aix-Marseille Université, France e, and possibly another recently identified subtype termed Vf. While this classification Reviewed by: works well when it comes to the architecture of the proteins, this is not the case for Kim Rachael Hardie, the function(s) of the secreted passenger. In this review, we will give an overview of University of Nottingham, United Kingdom the functions of the passengers of the different AT classes, shedding more light on the Timothy James Wells, variety of functions carried out by type V secretion systems.
    [Show full text]
  • Conformational Inactivation Induces Immunogenicity of the Receptor-Binding Pocket of a Bacterial Adhesin
    Conformational inactivation induces immunogenicity of the receptor-binding pocket of a bacterial adhesin Dagmara I. Kisielaa,1, Victoria B. Rodriguezb,1, Veronika Tchesnokovaa, Hovhannes Avagyana, Pavel Aprikiana, Yan Liuc, Xue-Ru Wuc, Wendy E. Thomasb, and Evgeni V. Sokurenkoa,2 Departments of aMicrobiology and bBioengineering, University of Washington, Seattle, WA 98195; and cDepartment of Urology, New York University School of Medicine, New York, NY 10016 Edited by Pamela J. Bjorkman, California Institute of Technology, Pasadena, CA, and approved October 15, 2013 (received for review July 30, 2013) Inhibiting antibodies targeting receptor-binding pockets in pro- the N-terminal lectin domain (LD) bears the mannose-binding teins is a major focus in the development of vaccines and in pocket (12). In the fimbrial FimH (i.e., FimH in the context of antibody-based therapeutic strategies. Here, by using a common the fimbrial structure), the LD switches from an inactive to an mannose-specific fimbrial adhesin of Escherichia coli, FimH, we active conformation as the result of the drag force on a bacte- demonstrate that locking the adhesin in a low-binding conforma- rium that is binding in flow. The inactive conformation displays fi K ∼ μ tion induces the production of binding pocket-specific, adhesion- a very low af nity to monomannose ( d 300 M), whereas the fi K < μ fi active conformation binds with high af nity ( d 1.2 M), with inhibiting antibodies. A di-sul de bridge was introduced into the fi conformationally dynamic FimH lectin domain, away from the the differences in af nity to tri/oligo-mannose structures being mannose-binding pocket but rendering it defective with regard less dramatic (13).
    [Show full text]
  • Insights Into the Autotransport Process of a Trimeric Autotransporter, Yersinia Adhesin a (Yada)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Nottingham Trent Institutional Repository (IRep) Insights into the autotransport process of a trimeric autotransporter, Yersinia Adhesin A (YadA). Nandini Chauhan1,2,*, Daniel Hatlem1,*, Marcella Orwick-Rydmark1, Kenneth Schneider1, Matthias Floetenmeyer2,3, Barth van Rossum4, Jack C. Leo1,2, Dirk Linke 1,2,* 1 Department of Biosciences, University of Oslo, Blindernveien 31, 0371, Oslo (Norway) 2 Max-Planck-Institute for Developmental Biology, Department 1, Tübingen (Germany) 3 The Centre for Microscopy and Microanalysis, the University of Queensland, 4072, St. Lucia Queensland (Australia) 4 Forschungsinstitut für Molekulare Pharmakologie, Department of NMR-Supported Structural Biology, Berlin, Germany • These authors contributed equally Abstract Trimeric autotransporter adhesins (TAAs) are a subset of a larger protein family called the type V secretion systems. They are localized on the cell surface of Gram-negative bacteria, function as mediators of attachment to inorganic surfaces and host cells, and thus include important virulence factors. Yersinia adhesin A (YadA) from Yersinia enterocolitica is a prototypical TAA that is used extensively to study the structure and function of the type V secretion system. A solid-state NMR study of the membrane anchor domain of YadA previously revealed a flexible stretch of small residues, termed the ASSA region, that links the membrane anchor to the stalk domain. In this study, we present evidence that single amino acid proline substitutions produce two different conformers of the membrane anchor domain of YadA; one with the N-termini facing the extracellular surface, and a second with the N-termini located in the periplasm.
    [Show full text]