Hurricanes of 1955 Gordon E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane and Tropical Storm
State of New Jersey 2014 Hazard Mitigation Plan Section 5. Risk Assessment 5.8 Hurricane and Tropical Storm 2014 Plan Update Changes The 2014 Plan Update includes tropical storms, hurricanes and storm surge in this hazard profile. In the 2011 HMP, storm surge was included in the flood hazard. The hazard profile has been significantly enhanced to include a detailed hazard description, location, extent, previous occurrences, probability of future occurrence, severity, warning time and secondary impacts. New and updated data and figures from ONJSC are incorporated. New and updated figures from other federal and state agencies are incorporated. Potential change in climate and its impacts on the flood hazard are discussed. The vulnerability assessment now directly follows the hazard profile. An exposure analysis of the population, general building stock, State-owned and leased buildings, critical facilities and infrastructure was conducted using best available SLOSH and storm surge data. Environmental impacts is a new subsection. 5.8.1 Profile Hazard Description A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (National Oceanic and Atmospheric Administration [NOAA] 2013a). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. -
NOM Technical Memorandum NWS HYDR0-21 STORM TIDE
NOM Technical Memorandum NWS HYDR0-21 STORM TIDE FREQUENCY ANALYSIS FOR THE COAST OF NORTH CAROLINA, SOUTH OF CAPE LOOKOUT Francis P. Ho Robert J. Tracey Office of Hydrology Silver Spring, Md. May 1975 UNITED STATES /NATIONAL OCEANIC AND / National Weather DEPARTMENT OF COMMERCE ATMOSPHERIC ADMINISTRATION Service Frederick B. Dent, Secretary Robert M. White. Administrator George P. Cressman, Director STORM TIDE FREQUENCY ANALYSIS FOR THE COAST OF NORTH CAROLINA, SOUTH OF CAPE LOOKOUT Contents 1. Introduction. 1 1.1 Objective and scope.......................................... 1 1.2 Authorization................................................ 1 1. 3 Study method. 2 2. Summary of historical hurricanes.................................. 2 2.1 Hurricane tracks. 2 2. 2 Historical notes. 3 3. Climatology of hurricane characteristics .......................... 12 3.1 Frequency of hurricane tracks ................................ 13 3.2 Probability distribution of hurricane intensity .............. 13 3.3 Probability distribution of radius of maximum winds .......... 14 3.4 Probability distributions of speed and direction of forward motion............................................. 14 4. Hurricane surge ....·. 14 4. 1 Surge model. • . 14 4.2 Shoaling factor.............................................. 15 5. Tide frequency analysis by joint probability method.............. 16 5.1 The joint probability method................................ 16 5. 2 Astronomical tide. 23 5.3 Tide frequencies at selected points......................... 23 5.4 Adjustment along coast...................................... 24 5. 5 Reference datum. 24 5.6 Comparison of frequency curves with observed tides and high-water marks. 26 6. Relation of this report to disaster planning..................... 27 7. Coordination and comparison with other reports................... 27 References. • . 30 ii Tables Table no. 1. Hurricane and tropical storm parameters - Cape Fear, N.C. 17 2. Hurricane and tropical storm parameters - Wrightsville Beach, N.C . -
Richmond, VA Hurricanes
Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Floods Caused by Tropical Systems: James River at Cartersville, VA
Floods Caused by Tropical Systems: James River at Cartersville, VA Latitude: 37.671 Period of Record: 1869-Present Longitude: -78.086 Flood Stage: 20 Last Flood: 2/25/2019 Number of Floods: 88 Date of Flood Crest (ft) Streamflow (cfs) Weather Summary 9/6/1935 27.8 134,000 The "Labor Day Hurricane" dumped heavy rain along the East Coast. A total of 16.62 inches of rain was reported in Easton and 12.1 inches of rain was reported in Salisbury, MD. 8/19/1955 24.48 104,000 Hurricane Diane made landfall 5 days after Hurricane Connie. Hurricane Diane produced several inches of rain with locally heavier amounts of 10 to 20 inches. 10/18/1932 21.54 75,400 Remnants of the eighth tropical storm of the season produced 2.00 inches of rainfall across most of the Mid- Atlantic region. 6/22/1972 37.87 362,000 Hurricane Agnes made landfall again over southeastern New York on June 22 and moved westward into Pennsylvania. Rainfall totals from June 20-25 range from 2-3 inches in the Upper Potomac to 18 inches near Shamokin, Pennsylvania. 8/12/1928 22.06 78,600 The remnants of an unnamed hurricane produced rainfall that caused flooding in the James and Appomattox basins. 8/18/1928 23.8 97,200 The weather summary is unavailable at this time. 10/16/1942 27.14 135,000 The remnants of the eighth tropical storm of the year produced torrential rains and caused the worst river flooding in the history of Virginia. 9/20/2003 22.89 89,825 Hurricane Isabel combined with another system and produced more than 3 inches of rain in VA with locally heavier amounts of 10 inches. -
Reef Corals in the Netherlands Antilles By
Ecological aspects of the distribution of reef corals in the Netherlands Antilles by Rolf P. M. Bak Caribbean Marine Biological Institute, Curaçao, Netherlands Antilles Abstract INTRODUCTION The vertical and horizontal of the distribution patterns The Netherlands Antilles consist of two groups of of corals and coral reefs (to a depth of 90 m) are dis- islands: the Leeward Group of Aruba, Bonaire and cussed in relation the environmental factors: to geomor- Curaçao and the Windward Group of St. Martin, phology of the bottom, available substrate, light, tur- St. Eustatius and Saba inset in fig. 1). Most bidity, sedimentation, water movement and temperature. (see of the research coral has been done in There is a general pattern which is comparable to other on reefs well-developed Caribbean reefs. However, as in other the Curaçao, with some attention being paid to areas variations are found, e.g. the depth and growth reefs of Aruba and Bonaire. The marine habitats form of Acropora palmata will depend on the degree of of the Windward are unstudied. There correla- Group relatively exposure to water movement. are strong show Leeward tions between the environmental variables and the oc- The few explorations made, the currence of coral species and their growth form, the Group of islands to be much richer in reef develop- species composition of coral communities and the charac- ment (and in speoies diversity) than St. Martin, St. ter of the coral reef. In some cases the relationship is not Eustatius and Saba. that obvious. The absence of Agaricia species at certain The factors coral distribution are points along the coast of Aruba and the dominance of governing Sargassum on the deep bottom at some places along the well known and include: light, sedimentation, wa- windward coast of Curaçao is not yet explained. -
Hurricane Florence
Hurricane Florence: Building resilience for the new normal April 2019 Contents Foreword 2 An improved and consistent approach is needed to address large concentrations of Executive summary 4 harmful waste located in high hazard areas 23 Section I: The Physical Context 6 Floods contribute to marginalizing vulnerable communities in multiple ways 23 Previous events: Flooding timeline in North Carolina 8 Climate has visibly changed, sea levels have visibly risen, and these Hurricane threat – Can a Category 1 storm trends are likely to continue 23 be more dangerous than a Category 4? 9 Economic motivators can be used as Section II: Socio-Economic levers for both action and inaction 23 Disaster Landscape 10 The Saffir-Simpson Scale is not sufficient Physical Landscape 11 to charaterize potential hurricane impacts 25 Understanding the Risk Landscape 13 Even the best data has limitations and can’t substitute for caution and common sense 25 Socio-Economic Landscape 13 Recovery after Recovery 13 Section V: Recommendations 26 Environmental Risk 14 Now is the time to act – failure to do so will be far more expensive in the long run 27 Coastal Development 15 We need to critically assess where we are Section III: What Happened? 16 building and how we are incentivizing risk 27 Response 17 Shifting from siloed interventions to a holistic approach is key 27 Recovery 17 Change how we communicate risk 27 Section IV: Key Insights 20 Insurance is vital, but it needs to be the Lived experience, even repeat experience, right type of insurance and it should be doesn’t make people take action 21 a last resort 28 As a Nation, we continue to Imagine how bad it could be and plan support high-risk investments and for worse 28 unsustainable development 21 Section VI: Ways Forward 30 Hurricane Florence: Building resilience for the new normal 1 Foreword 2 Hurricane Florence: Building resilience for the new normal When people live through a catastrophic event their experience becomes a milestone moment that colors everything moving forward. -
Hurricanes of 1955 Gordon E
DECEMBEB1955 MONTHLY WEATHER REVIEW 315 HURRICANES OF 1955 GORDON E. DUNN, WALTER R. DAVIS, AND PAUL L. MOORE Weather Bureau Offrce, Miami, Fla. 1. GENERAL SUMMARY grouping i,n theirpaths. Thethree hurricanes entering the United States all crossed the North Carolina coast There were 13 tropical storms in 1955, (fig. 9), of which within a 6-week period and three more crossed the Mexican 10 attained hurricane force, a number known to have been coast within 150 miles of Tampico within a period of 25 exceeded only once before when 11 hurricanes were re- days. corded in 1950. This compares with a normal of about The hurricane season of 1955 was the most disastrous 9.2 tropical storms and 5 of hurricane intensity. In con- in history and for the second consecutive year broke all trast to 1954, no hurricanes crossed the coastline north of previous records for damage. Hurricane Diane was Cape Hatteras andno hurricane winds were reported north undoubtedly the greatest natural catastrophe in the his- of that point. No tropical storm of hurricane intensity tory of the United Statesand earned the unenviable affected any portion of the United States coastline along distinction of “the first billion dollar hurricane”. While the Gulf of Mexico or in Florida for the second consecutive the WeatherBureau has conservatively estimated the year. Only one hurricane has affected Florida since 1950 direct damage from Diane at between $700,000,000 and and it was of little consequence. However, similar hurri- $800,000,000, indirect losses of wages, business earnings, cane-free periods have occurred before. -
Eastern Shore Archipelago: Conservation and Scientific Assessment
Eastern Shore Archipelago: Conservation and Scientific Assessment Field Studies of a Range of Sea Islands on the Eastern Shore of Nova Scotia from Clam Harbour to Taylor Head Monday, March 5 2012 Contributors: Nick Hill, Bob Guscott, Tom Neily, Peter Green, Tom Windeyer, Chris Pepper and David Currie 1 Contents 1. INTRODUCTION................................................................................................................. 5 1.1 Purpose of the Work ........................................................................................................................ 6 1.2 NSNT Mandate ................................................................................................................................. 7 1.3 Contents of Report ........................................................................................................................... 7 2. SITE DESCRIPTION ............................................................................................................. 8 2.1 Physical Characteristics .................................................................................................................... 8 2.2 Community History ........................................................................................................................... 8 2.3 Ship Harbour National Park and Eastern Shore Seaside Park System .............................................. 9 2.4 Community Profile ........................................................................................................................... -
August 12, 1955 Hurricane Connie Was Also a Flood Maker in The
August 12, 1955 Connie weakened while slowing and turning to the north, and struck North Carolina on August 12 as a Category 2 hurricane. Connie produced strong winds, high tides, and heavy rainfall as it moved ashore, causing heavy crop damage and 27 deaths in the state of North Carolina. Connie made a second landfall in Virginia, and it progressed inland until dissipating on August 15 near Sault Ste. Marie, Michigan. Four people were killed in Washington, D.C. due to a traffic accident. In the Chesapeake Bay, Connie capsized a boat, killing 14 people and prompting a change in Coast Guard regulation. There were six deaths each in Pennsylvania and New Jersey, and eleven deaths in New York, where record rainfall flooded homes and subways. At least 225,000 people lost power during the storm. Damage in the United States totaled around $86 million, although the rains from Connie was a prelude to flooding by Hurricane Diane. Hurricane Connie was also a flood maker in the Richmond area dumping 8.71 inches of rain on the 12th. Connie deposited 5-10 inches of rain within 100 miles of its track but gave Richmond little in the way of wind. Hurricane Diane A tropical wave spawned a tropical depression between the Lesser Antilles and Cape Verde on August 7. It slowly strengthened and became Tropical Storm Diane on August 9. After a Fujiwhara interaction defined as when two nearby cyclonic vortices orbit each other and close the distance between the circulations of their corresponding low-pressure areas. Hurricane Connie, Diane had such an interaction curved northward or north-northeastward and quickly deepened. -
12/06/01 Vicente Quevedo Natural
12/06/01 Vicente Quevedo Natural Heritage Division DNER P.O. Box 9066600 Pta. De Tierra Station San Juan, P.R. 00906-6600 Dear Mr. Quevedo, I was recently informed that Puerto Rico’s Department of Natural and Environmental Resources (DNER) is considering the establishment of a marine natural reserve for Steps Beach and surrounding reefs off the west coast to offer protection for the benefit of the elkhorn reef system in Rincon. I would recommend implementing additional conservation measures for the coastal habitats near Steps and Tres Palmas, particularly because these areas support endangered and threatened wildlife, and also contains one of the few remaining healthy stands of elkhorn coral (Acropora palmata) left in the Caribbean. A large-scale development project in the cattle field immediately fronting Steps Reef is likely to cause substantial run-off during construction, and elevated nutrients and pollutants once the establishment is operational (as a result of increased sewage production and pesticides and fertilizers used on the surrounding grounds). Coral reefs are negatively affected by sediments, excessive nutrients and pollutants, and elkhorn corals are particularly sensitive to these types of stressors. A development project in this area may accelerate the decline in the health and productivity of the nearshore reefs, and possibly threaten the survival of elkhorn coral populations due to their limited tolerance to sedimentation and nutrient loading. In support of further protection for Steps and Tres Palmas as a marine natural reserve, I am providing this information on the diversity, health and importance of two coral reefs located off the west coast of Puerto Rico near Rincon, Steps Reef and Tres Palmas. -
Flooding in Manville
Making Manville Sustainable A History Unlike Most Flooding in Manville • Raritan River • Millstone River • Royce Brook Flooding events last 50 years • 1966 Hurricane Diane (Cat 3) – at the peak of this event, Dukes Parkway was under 10 feet of water. 300 homes affected. • 1971 Hurricane Doria (Tropical Storm) – in excess of 10 inches of rain fell on Manville; the Raritan crested at 37.5 feet. • 1973 – an unnamed storm caused the evacuation of more than 1,000 residents. • 1996 – another unnamed storm caused widespread flooding across the Borough after six inches of rainfall. Foundation walls in some Lost Valley homes collapsed due to the pressure. Flooding events last 50 years • 1999 – Hurricane Floyd (Cat 4) – Worst flooding event to ever hit Manville with 10 to 12 inches of rain falling in a short period of time.Manville; the Lost Valley was devastated, the South side of Main Street & large areas on the North side. Raritan crested at 42 feet. Floyd damaged 1,200 of the town's 3,500 homes, businesses and buildings. • 2007 –Springtime Nor’easter – 10 to 12 inches of rain fell in Manville; the Lost Valley was devastated, the South side of Main Street & large areas on the North side. • 2010 – Springtime Nor’easter – Another spring storm turns into a flood event in Manville. • 2011 – Hurricane Irene (Cat 1) - This storm came up the coast as a Hurricane Cat 1, but after a month of near record rainfall, making Irene yet another huge flood event. The Army Corps of Engineers - A Decision that Makes No Sense In 2016, after spending more than $3 million on a study that took decades to complete, the Corps concluded there is not enough flood damage in the Borough to justify the project.