Computational Tools to Battle HIV

Total Page:16

File Type:pdf, Size:1020Kb

Computational Tools to Battle HIV Computational Tools to Battle HIV Bette T. M. Korber and Alan S. Perelson n 1981, AIDS, the acquired immune nations are projected to drop as much tion, and the human host ultimately deficiency syndrome, was initially as 20 years by 2010. Eurasia sits at the loses the race. The virus can quickly Idetected in a handful of gay men brink of the rapidly advancing storm. acquire drug-resistant mutations, partic- and reported in the Mortality and Russia, China, and India are facing bur- ularly when therapy is only partially Morbidity Report of the Centers for geoning epidemics with no cure and no successful, and the drug-resistant forms Disease Control. Once the disease had vaccine yet in hand. of the virus can be transmitted. This been defined and described, its pres- HIV has three peculiarities that rapid within-host evolution results in ence was rapidly recognized not only in make it a particularly challenging foe: extraordinary variation at the epidemic the homosexual community in the its latent period, its devastation of the level, and viruses from any two individ- United States but in other populations immune system, and its variability. It uals are quite distinct. and countries. By 1983, the etiological, has, on average, a decade-long latent The Theoretical Biology and or causative, agent was isolated: a retro- period during which infected individu- Biophysics Group at Los Alamos has virus1 called human immunodeficiency als carry the virus and can transmit the played an integral part in understanding virus, type I, or HIV-1. With that dis- virus but are not overtly ill; in fact, and defining the nature of both the covery, diagnostic tests soon became unless they are tested, they are likely to host-viral dynamics and the evolution available, and by the mid-1980s, it was be unaware of their infection. During of HIV. This article covers the history of clear that there was a new pathogen on this period, the immune system some of the ideas that were developed the loose in the world. It was soon rec- responds to the virus but is unable to by Los Alamos scientists in collabora- ognized that a global epidemic of terri- clear it, and the ability to make immune tion with experimental and theoretical ble magnitude was coming, although responses to any infection slowly dete- colleagues worldwide. the extent of the devastation now expe- riorates. Combinations of antiretroviral rienced in sub-Saharan Africa was therapies have been developed that can unimagined in those early days. The control viral replication and prolong The HIV-1 Databases: An World Health Organization established life and good health, but so far, these International Resource an international network drugs have not been able to clear the (www.unaids.org) to track this disease infection. Therapy is very expensive Los Alamos was the original home as it moved through populations, and and, because of side effects, can be dif- of GenBank, a database of all publicly through the years, it has maintained a ficult to take for years on end. available genetic sequences from virtu- grim record of HIV-1’s death toll and During the infection, HIV infects ally all organisms. GenBank is now spread. Current estimates indicate that and decimates CD4+ T lymphocytes, housed at the National Library of more than 65 million people have con- the very cells that are central to the Medicine at the National Institutes of tracted HIV-1, and 25 million of those immune response needed to counter a Health (NIH). During the mid-1980s, are already dead. Africa has been the viral infection. But the most serious HIV sequences began to be archived in most brutally affected. Life expectan- impediment to defeating the virus is its GenBank, arriving not only from the cies in some of the worst afflicted extraordinary variability. This virus United States and Europe, but from evolves during the course of every Africa as well. Gerald Myers, who was 1 A retrovirus is a virus that stores its infection. The immune system responds working at Los Alamos at the time, was genetic code in RNA rather than DNA, and inhibits one form of the virus, but a struck by the extraordinary diversity of and once in the host, copies its RNA into new form inevitably escapes from that the incoming HIV sequences. He real- DNA. The viral DNA is then incorporated into the host DNA and read to make new response. This cyclical response and ized, with great prescience, that given virus particles. evasion continues throughout the infec- this level of diversity, creating a vaccine 208 Los Alamos Science Number 28 2003 Computational Tools to Battle HIV was going to be a tremendous challenge and that the HIV research community would benefit from additional curatorial effort. He proposed to generate viral sequence alignments to enable compar- isons of similarities between the incom- ing and archived sequences, to correlate the sequences with any information about their gene products, to link sequences to additional information (for example, the health status of patients and geographic and phenotypic infor- mation), and to publish an annual com- pendium. Researchers with new HIV sequences could then quickly put them into the context of a global framework without having to extract and organize the information each time. The NIH, persuaded by Myers, subsequently funded a program to create the HIV sequence database. In the mid-1990s, Myers initiated databases for other pathogens, leaving the HIV project to Los Alamos researchers Bette Korber and Carla Kuiken. Sequencing technologies were Figure 1. Tools to Combat HIV rapidly improving, and HIV sequences Los Alamos is home to four databases that archive most of what is known about were being generated at an accelerating HIV and its associated immune responses, drug resistance, and vaccine trials. The pace. With a dedicated staff contribut- database website at www.hiv.lanl.gov also contains numerous analysis tools. This ing both computer and biological figure is a screenshot from a geography tool that provides a bird’s-eye view of viral expertise, the HIV sequence database diversity throughout a region, in this case the African continent. The pie chart indi- developed into an easily used, Web- cates the distribution of viral strains for different subregions. Clicking on an individ- accessible, relational database, which ual pie chart on the Web brings up more information about the local viral strains. Clicking on a strain accesses the sequence information contained in the database. now houses roughly 80,000 HIV sequences. Web search tools were added to retrieve data in new ways. For and added to the sequence database. It Alamos databases became an integral example, a researcher working on a allowed a researcher to integrate part of global HIV research efforts, pro- vaccine for South Africa can pull up an immune-response data with sequence viding a foundation for continuing sci- automated alignment of all regional variability data. In 1997, an HIV drug- entific work. sequences, organized by year of isola- resistance mutation database was tion, by subtype, or by phenotype (see added, and in 2002, a vaccine-trial data- Figure 1.) Pioneering computational base became part of the collection. The HIV, the Shape Changer tools were developed for handling such latter was developed by Los Alamos basic problems as detecting viral postdoctoral fellow John Mokili. It The database was developed to be recombination, hypermutation, and summarizes and allows direct compar- an international resource, but the inte- polymerase-chain-reaction contamina- isons of data sets from hundreds of vac- grated data it provides also serves as a tion, tools that served to improve vastly cine studies conducted in primates. The basis for our own research efforts, and the overall quality of the HIV scientific HIV database Web pages, with access we have used it to study the evolution literature. to all four databases, received more of the virus from many different per- In 1995, an immunology database than a million hits per month during the spectives. The exposed envelope pro- that contains information concerning peak use period in 2002, averaging tein of HIV (shown in Figure 2) is the HIV immune responses was created 35,137 pages accessed per day. The Los most antibody-vulnerable part of the Number 28 2003 Los Alamos Science 209 Computational Tools to Battle HIV virus. The envelope has two different protein components: gp41, which is locked into the outer membrane of the virus, and gp120, which is bound to gp41. The component gp120 projects from the surface of the virus, allowing HIV to recognize and bind to receptors on the human cell it infects. Gp120 is remarkably mutable, and sequences from different lineages, or subtypes, of HIV can differ in more than 30 percent of their amino acids. But even the high fraction of amino- acid changes does not reflect HIV’s true capacity to generate structural diversity. The virus has at least five mechanisms to alter its antigenic con- formation—the molecular shape that is relevant to an immune response—and thus exhibits an extraordinary (and Figure 2. Human Immunodeficiency Virus, Type 1 This illustration depicts the essential features of HIV-1. The virus stores its genetic unique) capacity to avoid triggering the information in two strands of RNA. These lie within a protein layer known as the immune system. Following are the five capsid, which is surrounded by the matrix protein. Also lying within the capsid is a mechanisms: metaprotein complex called pol, which contains four protein subunits: a reverse transcriptase, which will copy the RNA into DNA once the RNA has entered a host Mutational change through base cell; an integrase, which inserts the viral DNA into the host cell’s genome, an substitution.
Recommended publications
  • Our Immune System, Vaccines, and Vaccine Strategies for AIDS and COVID-19
    Our Immune System, Vaccines, and Vaccine Strategies for AIDS and COVID-19 Dr. Bette Korber Los Alamos National Laboratory Constantly vigilant, our immune system recognizes and controls infections to protect us from disease. Furthermore, we have a capacity for immunological memory, which enables our immune system to “remember” a pathogen we have encountered in the past, and to make a more rapid and vigorous defensive response should we encounter that same disease again. Vaccines tap into this natural capacity for immunological memory. I’ll briefly review our ongoing work at Los Alamos National Laboratory to contribute to global vaccine efforts for HIV-1 and COVID-19. The rapid evolution and extraordinary diversity of HIV provides particular challenges for developing an AIDS vaccine, and our work focuses on strategies to contend with that diversity. By contrast, SARS-CoV-2, the virus that causes COVID-19, has evolved very slowly during the pandemic, although even this limited diversity can be important. We are tracking emerging viral diversity to help design appropriate reagents to ensure that COVID-19 vaccines and therapeutics currently under development will remain relevant over the coming year. Using our tracking tools, last April we identified a SARS-CoV-2 variant that appeared to be more transmissible than the original form. This viral variant was subsequently shown to be more infectious experimentally, and has now become the globally dominant form of the virus. Bio Dr. Bette Korber is a Laboratory Fellow at the Los Alamos National Laboratory in the Theoretical Biology and Biophysics Group. Her work focuses on viral evolution, the human immune response to infection, and vaccine design.
    [Show full text]
  • MAKING SENSE of CORONAVIRUS MUTATIONS Different SARS-Cov-2 Strains Haven’T Yet Had a Major Impact on the Course of the Pandemic — but They Might in Future
    Feature SOURCE: STRUCTURAL DATA FROM K. SHEN & J. LUBAN K. SHEN FROM DATA STRUCTURAL SOURCE: The spike protein of SARS-CoV-2 has a common mutation (circled) that seems to shift the protein from a closed (left) to an open (right) form. MAKING SENSE OF CORONAVIRUS MUTATIONS Different SARS-CoV-2 strains haven’t yet had a major impact on the course of the pandemic — but they might in future. By Ewen Callaway hen COVID-19 spread around started scouring thousands of coronavirus In April, Korber, Montefiori and others the globe this year, David genetic sequences for mutations that might warned in a preprint posted to the bioRxiv Montefiori wondered how the have changed the virus’s properties as it made server that “D614G is increasing in frequency deadly virus behind the pan- its way around the world. at an alarming rate”1. It had rapidly become demic might be changing as it Compared with HIV, SARS-CoV-2 is chang- the dominant SARS-CoV-2 lineage in Europe passed from person to person. ing much more slowly as it spreads. But one and had then taken hold in the United States, Montefiori is a virologist who mutation stood out to Korber. It was in the Canada and Australia. D614G represented a has spent much of his career gene encoding the spike protein, which helps “more transmissible form of SARS-CoV-2”, Wstudying how chance mutations in HIV help it virus particles to penetrate cells. Korber saw the paper declared, one that had emerged as to evade the immune system.
    [Show full text]
  • Local Ceremonies to Honor the Team Were Held This Spring in Santa Fe
    ReflectionsLos Alamos National Laboratory Vol. 3, No. 5 • June 1998 … see pages 6 and 7 A Department of Energy/University of California Laboratory Reflections Inside this issue … Safety: month-long emphasis, Cover photo illustration by Edwin Vigil year-long concern Immunologist devotes life’s work to AIDS research . Page 3 June is National Safety Month, and a number of activities promoting safety are taking place at work sites, schools and other Making the Lab safer . Page 4 institutions across the country. No doubt there will be lots of Lab would rather pamphlets handed out, advice given, statistics recited and presen- give it away . Page 5 tations made during the monthly observance. But if calling attention to safety Nonproliferation . Pages 6 and 7 saves just one life or prevents just one person from being injured, it will be well worth the effort. People . Pages 8 and 9 Here at the Lab, Safety Month will be observed in July (see Page 4) as it was last Just for fun . Page 11 year. Still, it doesn’t hurt to get in the spirit of thinking about safety a month in Spotlight: advance. Actually, safety is something we should think about all the time, on or Really tough ladies . Page 12 off the job. This was noted recently by an employee in a Daily Newsbulletin letter to the editor (“Safe-living people vs. safely-operating employees,” April 21). The employee said he practices safety at work because he is a safety-conscious person all the time. “I think safety consciousness only gets internalized and personalized when it is not limited to the workplace,” he wrote.
    [Show full text]
  • Croi 2021 Program Committee
    General Information CONTENTS WELCOME . 2 General Information General Information OVERVIEW . 2 CONTINUING MEDICAL EDUCATION . 3 CONFERENCE SUPPORT . 4 VIRTUAL PLATFORM . 5 ON-DEMAND CONTENT AND WEBCASTS . 5 CONFERENCE SCHEDULE AT A GLANCE . 6 PRECONFERENCE SESSIONS . 9 LIVE PLENARY, ORAL, AND INTERACTIVE SESSIONS, AND ON-DEMAND SYMPOSIA BY DAY . 11 SCIENCE SPOTLIGHTS™ . 47 SCIENCE SPOTLIGHT™ SESSIONS BY CATEGORY . 109 CROI FOUNDATION . 112 IAS–USA . 112 CROI 2021 PROGRAM COMMITTEE . 113 Scientific Program Committee . 113 Community Liaison Subcommittee . 113 Former Members . 113 EXTERNAL REVIEWERS . .114 SCHOLARSHIP AWARDEES . 114 AFFILIATED OR PROXIMATE ACTIVITIES . 114 EMBARGO POLICIES AND SOCIAL MEDIA . 115 CONFERENCE ETIQUETTE . 115 ABSTRACT PROCESS Scientific Categories . 116 Abstract Content . 117 Presenter Responsibilities . 117 Abstract Review Process . 117 Statistics for Abstracts . 117 Abstracts Related to SARS-CoV-2 and Special Study Populations . 117. INDEX OF SPECIAL STUDY POPULATIONS . 118 INDEX OF PRESENTING AUTHORS . .122 . Version 9 .0 | Last Update on March 8, 2021 Printed in the United States of America . © Copyright 2021 CROI Foundation/IAS–USA . All rights reserved . ISBN #978-1-7320053-4-1 vCROI 2021 1 General Information WELCOME TO vCROI 2021 Welcome to vCROI 2021! The COVID-19 pandemic has changed the world for all of us in so many ways . Over the past year, we have had to put some of our HIV research on hold, learned to do our research in different ways using different tools, to communicate with each other in virtual formats, and to apply the many lessons in HIV research, care, and community advocacy to addressing the COVID-19 pandemic . Scientists and community stakeholders who have long been engaged in the endeavor to end the epidemic of HIV have pivoted to support and inform the unprecedented progress made in battle against SARS-CoV-2 .
    [Show full text]
  • Regulation of Murine Class I Genes by Interferons Is Controlled by Regions
    Proc. Nati. Acad. Sci. USA Vol. 84, pp. 3380-3384, May 1987 Immunology Regulation of murine class I genes by interferons is controlled by regions located both 5' and 3' to the transcription initiation site (interferon action/transplantation antigens/gene regulation) BETTE KORBER, LEROY HOOD, AND IWONA STROYNOWSKI Division of Biology, California Institute of Technology, Pasadena, CA 91125 Contributed by Leroy Hood, January 7, 1987 ABSTRACT Interferons regulate the expression of a large initiation site are independently involved in IFN-a and IFN-y number of mammalian genes, including the major histocom- regulation of murine class I genes and that the level of patibility antigen genes. To investigate the mechanisms in- induction controlled by the promoter region constitutes only volved in interferon action, we have analyzed the ability of a minor portion of the response in L cells. In addition, we murine H-2Ld and H-2Dd DNA sequences to control the present results suggesting that the response to IFN-y and -a responses to interferon. The results indicate that interferon may have different sequence requirements in the promoter regulation of class I gene expression is complex and involves at region. least two mechanisms that are dependent on class I sequences located upstream and downstream to the transcription initia- tion site. In transfected mouse L cells, both of these regions are MATERIALS AND METHODS required for full enhancement of class I gene expression, with DNA Constructs, Enzymes, and Reagents. Class I genes and the major portion of the response controlled by the sequences their derivatives were subcloned from BALB/c cosmid and located 3' to the transcription initiation site.
    [Show full text]
  • BETTE KORBER for the Degree of Doctor of Philosophy Chemical
    REGULATION OF GLASS I GENES BY INTERFERONS Thesis by BETTE KORBER In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Division of Chemistry and Chemical Engineering California Institute of Technology Pasadena, California 1988 (submitted May 17, 1988) 11 This thesis is dedicated to my shelter and my storm, James Theiler. Ill Through the years, a man peoples a space with images of provinces, kingdoms, mountains, bays, ships, islands, fishes, rooms, tools, stars, horses, and people. Shortly before his death, he discovers that the patient labyrinth of lines traces the image of his own face. Beyond my anxiety, beyond this writing, the universe waits, inexhaustible, inviting. — Jorge Luis Borges You see, one thing is, I can live with doubt and uncertainty and not knowing. I think it is much more interesting to live not knowing than to have answers which might be wrong. I have approximate answers and possible beliefs and different degrees of certainty about different things... I don’t feel frightened by not knowing things, by being lost in a mysterious universe without having any purpose, which is the way it really is, so far as I can tell... I don’t feel frightened. — Richard P. Feynman Don’t be blue, be determined. — Leroy Hood iV TABLE OF COHTEHTS Page Acknowledgements...........................................................................................................................................................'v Abstract...............................................................................................................................................................................
    [Show full text]
  • HIV Vaccine-Research Team Shifts to SARS-Cov-2
    HIV vaccine-research team shifts to SARS-CoV-2 May 7, 2020 Building on previous work designing an experimental HIV vaccine being tested in two human vaccine efficacy trials, the Los Alamos National Laboratory HIV team is now deploying its expertise in genetic databases and bioinformatics against the novel coronavirus SARS-CoV-2, the virus that causes the COVID-19 disease. Three main thrusts are underway from the HIV team: developing a T-cell response vaccine approach, tracking the origin of the pathogen, and building a robust bioinformatics pipeline to track the virus’s evolution. While this work focuses on attacking the virus itself, other bioinformatics and modeling efforts across the Laboratory aim at predicting disease spread to support decision making by government and health agencies. Developing a T-cell response vaccine approach Bette Korber, a computational biologist and the driving force behind the “mosaic” vaccine concept for HIV, together with fellow scientists Will Fischer and Sandrasegaram Gnanakaran, is shifting her attention from HIV, ebola, and influenza vaccines to developing a T-cell based vaccine design for the SARS CoV-2 coronavirus. Traditional antibody vaccines are primarily intended to reduce rates of infection. Korber says they hope that vaccine-elicited T-cell responses could help ameliorate disease severity if people do get infected, and so this approach could be used to complement antibody-based vaccines. Korber and the HIV team members are in the Laboratory’s Theoretical Biology and Biophysics group. Tracking the origin of the pathogen Elena Giorgi, also of the Theoretical Biology and Biophysics group, recently published a pre-print paper on the origins of the virus,“Emergence of SARS-CoV-2 through Recombination and Strong Purifying Selection.” “Our team demonstrated, by looking at the genetic sequence of the virus and comparing it to other known coronaviruses, that it originated from animals,” said Giorgi.
    [Show full text]
  • Of Sciences of the UNITED STATES of AMERICA
    Proceedings OF THE National Academy of Sciences OF THE UNITED STATES OF AMERICA May 1987 Volume 84, Number 10 pp. 3081-3536 Table of Contents AUTHOR INDEX vii Physical Sciences CHEMISTRY Phytotoxins from the pathogenic fungi Drechslera maydis and Drechslera F. Sugawara, G. Strobel, R. N. Strange, 3081 sorghicola J. N. Siedow, G. D. Van Duyne, and J. Clardy Accessible surface areas as a measure of the thermodynamic parameters of Tatsuo Ooi, Motohisa Oobatake, George 3086 hydration of peptides Ndmethy, and Harold A. Scheraga Discrete wave mechanics: Multidimensional systems Frederick T. Wall 3091 MATHEMATICS Algebraic K-theory of discrete subgroups of Lie groups F. T. Farrell and L. E. Jones 3095 Biological Sciences BIOCHEMISTRY Specific inhibition of Trypanosoma cruzi neuraminidase by the human plasma R. P. Prioli, I. Rosenberg, and M. E. A. 3097 glycoprotein "cruzin" Pereira Regulation of actomyositl ATPase activity by troponin-tropomyosin: Effect of Lois E. Greene, David L. Williams, Jr., 3102 the binding of the myosin subfragment 1 (S-1) ATP complex and Evan Eisenberg i Contents Deduced amino acid sequence of bovine retinal Go.,: Similarities to other Krisa P. Van Meurs, C. William Angus, 3107 guanine nucleotide-binding proteins Sukadev Lavu, Hsiang-Fu Kung, Susanne K. Czarnecki, Joel Moss, and Martha Vaughan Cloning and DNA sequence of the mercuric- and organomercurial-resistance Hugh G. Griffin, Timothy J. Foster, 3112 determinants of plasmid pDU1358 Simon Silver, and Tapan K. Misra Sequences from a prokaryotic genome or the mouse dihydrofolate reductase Alison Baker and Gottfried Schatz 3117 gene can restore the import of a truncated precursor protein into yeast mitochondria Thyroid hormone regulates expression of a transfected a-myosin heavy-chain Thomas A.
    [Show full text]
  • Evaluation of Different V3 Peptides in an Enzyme Immunoassay for Specific HIV Type 1 Group O Antibody Detection
    AIDS RESEARCH AM) HUMAN RETROVIRUSES Volume 14, Number 11,1998, pp. 963-972 Mary Ann Liebert, Inc. Evaluation of Different V3 Peptides in an Enzyme Immunoassay for Specific HIV Type 1 Group O Antibody Detection PASCALE ONDOA,' BE'ITY WELEMS,' KATRIEN FRANSEN,' JOHN NKENGASONG,' WOUTER JANSSENS,' LEO J3EYNDRICJSX,' LEOPOLD ZEKENG? PETER NDUMBE? FRANÇOIS SIMON: SENTOB SARAGOSTI: LUTZ GÜRTLER? JLART~PEETERS;~ BETTE KORBER? JAAP GOUDSMIT,9 and GUIDO VAN DER GROEN' ABSTRACT Strategies to discriminate group O from group M infections need to be improved. We have developed and evaluated an HN-1 group O V3 peptide-based enzyme immunoassay (PEW) for specific HIvl group O an- tibody detection among HIV-l-infected patients. Synthetic peptides, derived from the amino acid sequences of the V3 loop of 15 different group O strains and 7 group O consensus sequences, were evaluated in a PEIA against a panel of genetically confirmed group O (n = 33), group M (n = go), and HIV-1 antibody-negative sera (n = 17). The best-performing PEIA(s) were then used to screen 134 sera of European and 336 sera of Cameroonian origin for the presence of anti-HIV-1 group O antibodies. The reactivity of reference ("gold standard") sera to individual peptides in the PEIA resulted in the selection of five different peptides with sen- sitivities (sens), specificities (spec), and test efficiencies (TES) in the range of 90 to 100%. Improvement of the PEIA was obtained with simultaneous reactivity of at least two different peptides in separate wells of an ELISA plate, together with stringent criteria for positivity.
    [Show full text]
  • Simulations Reveal How Dominant SARS- Cov-2 Strain Binds to Host, Succumbs to Antibodies
    Simulations reveal how dominant SARS- CoV-2 strain binds to host, succumbs to antibodies April 16, 2021 EMBARGOED UNTIL FRIDAY, 4/16/21 AT 12 P.M. EDT/10 A.M. MDT LOS ALAMOS, N.M., April 16, 2021—Large-scale supercomputer simulations at the atomic level show that the dominant G form variant of the COVID-19-causing virus is more infectious partly because of its greater ability to readily bind to its target host receptor in the body, compared to other variants. These research results from a Los Alamos National Laboratory–led team illuminate the mechanism of both infection by the G form and antibody resistance against it, which could help in future vaccine development. “We found that the interactions among the basic building blocks of the Spike protein become more symmetrical in the G form, and that gives it more opportunities to bind to the receptors in the host — in us,” said Gnana Gnanakaran, corresponding author of the paper published today in Science Advances. “But at the same time, that means antibodies can more easily neutralize it. In essence, the variant puts its head up to bind to the receptor, which gives antibodies the chance to attack it.” Researchers knew that the variant, also known as D614G, was more infectious and could be neutralized by antibodies, but they didn’t know how. Simulating more than a million individual atoms and requiring about 24 million CPU hours of supercomputer time, the new work provides molecular-level detail about the behavior of this variant’s Spike. Current vaccines for SARS-CoV-2, the virus that causes COVID-19, are based on the original D614 form of the virus.
    [Show full text]
  • The Next Big Idea
    Richard P. Feynman Center for Innovation PROGRESS REPORTREPORT the next big idea LA-UR-XX-XXXXX1 Transitioning Los Alamos’ Top Innovations Depends on researchers who want to take their scientific discoveries beyond the laboratory and create technologies that can change the world. We do this by inventing, innovating, disrupting and partnering to deploy Los Alamos technology. Inventing Los Alamos National Laboratory has been inventing for the past 75 years to accomplish the difficult, the unexpected and at times, what seems impossible. In 2017, Los Alamos was granted a patent on average every 4 days. Innovating Los Alamos’ immense contributions in leading edge science and technology research and de- velopment are directed into solving complex and forthcoming national security challenges. This year we honor the Los Alamos researchers who have exceptional and longstanding con- tributions to scientific discovery, innovation, and collaborations to deploy their technology. Disrupting Los Alamos has a long history of disruptive innovations starting with the first nuclear weapon. This year we highlight big and small science behind the next disruptive innovations; “mosaic” vaccine for HIV, innovation in small nuclear reactor technology, software suite that pushes boundaries for modeling fluid flow and contaminant transport in fractured rock, and the development of augmented reality tools for nuclear criticality safety. Partnering Los Alamos science has assisted partners big and small with their toughest challenges, this year we had four postdocs who took on a challenge to reach out to potential partners to test their technology’s commercial potential. Contact Information: Phone: 505.665.9090 Email: [email protected] Web: www/lanl.gov/feynmancenter fci.lanl.gov 2 The people powering innovation The Richard P.
    [Show full text]
  • Coping with Viral Diversity in HIV Vaccine Design: a Response to Nickle Et Al
    Correspondence recombined natural sequences, the algorithm proceeds by a Coping with Viral Diversity in series of iterations of recombination and selection, HIV Vaccine Design: optimizing for 9-mer coverage of the input sequences. The result is a small set of full-length protein sequences that A Response to Nickle et al. collectively approach the upper bound on coverage Will Fischer, H. X. Liao, Barton F. Haynes, attainable for a given number of proteins [2]. Norman L. Letvin, Bette Korber We designed a three-mosaic protein set using the same input data as Nickle et al. to directly compare the two Nickle et al. [1] recently reported a computational method methods using the same metric as Nickle et al. The mosaic set, for HIV-1 vaccine antigen design; here we compare this despite being constrained to use full-length proteins, method with our previously published vaccine antigen design performed slightly better in terms of 9-mer coverage than method [2], using several criteria that we believe to be three protein lengths using COTþ (Figure 2). The mosaics important for a successful vaccine candidate [2]. The intent of used three full-length protein sequences, however, compared both approaches is to design a set of vaccine antigens that to 38 fragments for Gag and 15 for Nef included in the could protect against diverse circulating strains of HIV-1 by optimal coverage COTþ antigen design (Figure 1, Table 1). eliciting broad T cell responses. T cells recognize short The processing of antigens that ultimately results in the peptides of 8–12 amino acids, called epitopes, that are presentation of epitopes is not completely understood.
    [Show full text]