Cosmic Carbon Chemistry: from the Interstellar Medium to the Early Earth

Total Page:16

File Type:pdf, Size:1020Kb

Cosmic Carbon Chemistry: from the Interstellar Medium to the Early Earth Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth Pascale Ehrenfreund1,2 and Jan Cami3,4 1Leiden Institute of Chemistry, 2300 RA Leiden, The Netherlands 2Space Policy Institute, Washington DC 3Department of Physics and Astronomy, UWO, London, ON, Canada 4SETI Institute, Mountain View, California 94043 Correspondence: [email protected] Astronomical observations have shown that carbonaceous compounds in the gas and solid state, refractory and icy are ubiquitous in our and distant galaxies. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surpris- ingly large number of molecules that are used in contemporary biochemistry on Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites, and interplanetary dust particles. In this article we review the current knowl- edge of abundant organic material in different space environments and investigate the con- nection between presolar and solar system material, based on observations of interstellar dust and gas, cometary volatiles, simulation experiments, and the analysis of extraterrestrial matter. Current challenges in astrochemistry are discussed and future research directions are proposed. arbon is a key element in the evolution of variety of organic molecules in circumstellar Cprebiotic material (Henning and Salama and interstellar environments. During the for- 1998), and becomes biologically interesting mation of the solar system, this interstellar in compounds with nitrogen, oxygen and organic material was chemically processed and hydrogen. Our understanding of the evolution later integrated in the presolar nebula from of organic molecules—including such com- which planets and small solar system bodies pounds—and their voyage from molecular formed. The remnant planetesimals in the clouds to the early solar system and Earth pro- form of comets and asteroids impacted the vides important constraints on the emergence young planets in the early history of the solar of life on Earth and possibly elsewhere (Ehren- system (Gomes et al. 2005). The large quantities freund and Charnley 2000). Figure 1 shows of extraterrestrial material delivered to young the cycle of organic molecules in the universe. planetary surfaces during the heavy bombard- Gas and solid-state chemical reactions form a ment phase may have played a key role in life’s Editors: David Deamer and Jack W. Szostak Additional Perspectives on The Origins of Life available at www.cshperspectives.org Copyright # 2010 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a002097 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a002097 1 Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press P. Ehrenfreund and J. Cami Complex carbon chemistry in Organic chemistry circumstellar envelopes of in interstellar clouds evolved stars. Processing of organics in presolar nebula; condensation into asteroids, comets and planets. Meteoritic infall of organic matter Figure 1. Carbon pathways between interstellar and circumstellar regions and the forming solar system. origin (Chyba and Sagan 1992, Ehrenfreund during stellar collapse and supernova explo- et al. 2002). How elements are formed, how sions. In the denser regions of interstellar space, complex carbonaceous molecules in space are, the so-called interstellar clouds, active chemical what their abundance is and on what timescales pathways form simple and complex carbon mol- they form are crucial questions within cosmo- ecules from carbon atoms (van Dishoeck and chemistry. Blake1998).Circumstellarenvelopesareregarded as the largest factories of carbon chemistry in space (Kwok 2004, 2009). Inventory of Cosmic Carbon Organic molecules in the solar system are Carbon is found in space in all its allotropic found in planetary atmospheres and on the sur- forms: diamond, graphite, and fullerene (Ca- face of many outer solar system moons (e.g., taldo et al. 2004). Astronomical observations Cruikshanket al. 2005; Raulin 2008; Lorenz et al. in the last decade have shown that carbonaceous 2008). More than 50 molecules have been iden- compounds (gaseous molecules and solids) are tified in cometary comae (Crovisier et al. 2009). ubiquitous in our own as well as in distant gal- Many small organic molecules observed in axies (Ehrenfreund et al. 2006a). The first chem- cometary comae probably originate wholly or ical enrichment of the universe may likely be partially from the decomposition of larger mol- connected to the first generation of stars ecules or particles, indicating that large poly- (Spaans 2004). Large carbon abundances are mers such as polyoxymethylene and HCN- already extrapolated from observations of the polymers are present in comets (Ehrenfreund strong C[II] and CO lines in the hosts of the et al. 2004; Cottin and Fray 2008). Carbona- most distant quasars (Bertoldi et al. 2003). ceous chondrites (meteorites) and micromete- Carbon in space was first produced in stellar orites do contain a variety of organics (e.g., see interiors in fusion reactions and was later Alexander et al. 2007; Sephton 2002; Septhon ejected into interstellar and intergalactic space and Botta 2005 for reviews). They are fragments 2 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a002097 Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Cosmic Carbon Chemistry of cometary and asteroidal bodies. Investigating followed by CO, the most abundant carbon- 24 their organic composition often indicates the containing species, with CO/H2 10 . nature of the parental body (Hiroi et al. 1993; In cold dark clouds with a temperature of Ehrenfreund et al. 2001; Nesvorny et al. 2009). 3–10 K the sticking coefficient of most atoms and molecules is close to unity and all species (except H and He) freeze out (Ehrenfreund Cosmic Cycling of Organics 2 and Charnley 2000). At 10 K only H, D, C, O, The interstellar medium, the space between the and N atoms have sufficient mobility to interact stars, is composed primarily of H and He and on the surfaces of grains. Dark clouds offer a constitutes a few percent of the galactic mass. protected environment for the formation of Interstellar material is dominated by interstellar larger molecules. Those regions have a rather gas (99%). The remaining 1% is composed of high density (106/ cm3) and experience a low solid silicate and carbon-based mm-sized dust radiation field of 103 photons cm2/s induced particles present throughout interstellar clouds by cosmic rays (Prasad and Tarafdar 1983). that provide surfaces for accretion of gas phase The diffuse interstellar medium is charac- species and subsequent grain surface chemistry terized by a low density (103 atoms/cm3) and (Ehrenfreund and Charnley 2000; Ehrenfreund temperatures 100 K. Diffuse clouds are fila- and Fraser 2003). Fundamental physical param- mentary structures that surround cold dense eters such as temperature and density vary interstellar regions. Ices are not present in those strongly across the spectrum of interstellar regions and a strong radiation field of 108 regions. The diversity of interstellar clouds photons/cm2/s (Mathis et al. 1983) dominates results from energy injected by supernova the formation and evolution of molecules and shockwaves and stellar outflows and radiative larger structures. Small carbonaceous mole- losses (Wolfire et al. 2003). The most recent cules in the gas phase are easily destroyed by classification by Wooden et al. (2004) describes radiation. Atoms with ionization potentials less in detail very low-density hot gas, environments than 13.6 eV are photoionized. The identifica- with warm intercloud gas, and regions with tion of many small molecules in dense clouds denser and colder material, see Table 1. Cosmic implies that their destruction is well balanced abundances in the interstellar medium are by active formation routes. Ion-molecule reac- derived by measuring elemental abundances tions,dissociative recombinationwithelectrons, in stellar atmospheres. These cosmic elemental radiative association reactions and neutral- abundances determine the amount of elements neutral reactions contribute to gas phase proc- available for the formation of molecules and esses and influence interstellar chemistry (Snow particles. Gas phase and solid-state reactions and McCall 2006). and gas-grain interactions lead to the formation “Stardust,” in the form of dust and mole- of complex molecules. H2 is by far the most cules, is injected by stellar sources in their abundant molecule in cold interstellar regions, late stage of evolution into interstellar clouds. Table 1. Phases of the interstellar medium (adapted from Wooden et al. 2004). ISM component Designation Temperature (K) Density [cm23] Hot ionized medium coronal gas 106 0.003 Warm ionized medium diffuse ionized gas 104 .10 Warm neutral medium intercloud HI 104 0.1 Atomic cold neutral medium diffuse clouds 100 10–100 Molecular cold neutral medium dark clouds, molecular ,50 103 –105 clouds, dense clouds Molecular hot cores protostellar cores 100–300 .106 Adapted from Wooden et al. 2004. Cite this article as Cold Spring Harb Perspect Biol 2010;2:a002097 3 Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by
Recommended publications
  • Perspective in Search of Planets and Life Around Other Stars
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5353–5355, May 1999 Perspective In search of planets and life around other stars Jonathan I. Lunine* Reparto di Planetologia, Consiglio Nazionale delle Ricerche, Istituto di Astrofisica Spaziale, Rome I-00133, Italy The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined. The first detection of a planet orbiting around another star like Table 1. Jovian-mass planets around main-sequence stars our Sun came in 1995, after decades of null results and false Star’s Semi-major Period, alarms. As of this writing, 18 objects have been found with masses Star mass axis, AU days Eccentricity* Mass† potentially less than 12 times that of Jupiter, but none less than 40% of Jupiter’s mass, around main-sequence stars (1) (see Table HD187123 1.00 0.042 3.097 0.03 0.57 1). In addition, several planetary-mass bodies have been detected HD75289 1.05 0.046 3.5097 0.00 0.42 orbiting pulsars. Although these are interesting as well, the exotic Tau Boo 1.20 0.047 3.3126 0.00 3.66 environments around neutron stars make it unlikely that their 51 Peg 0.98 0.051 4.2308 0.01 0.44 companions are abodes for life. It is the success in finding planets Ups And 1.10 0.054 4.62 0.15 0.61 around Sun-like stars that provides a technological stepping stone HD217107 0.96 0.072 7.11 0.14 1.28 ‡ to one of the great aspirations of humanity: to find a world like 55 Cnc 0.90 0.110 14.656 0.04 1.5–3 the Earth orbiting around a distant star.
    [Show full text]
  • Lifetimes of Interstellar Dust from Cosmic Ray Exposure Ages of Presolar Silicon Carbide
    Lifetimes of interstellar dust from cosmic ray exposure ages of presolar silicon carbide Philipp R. Hecka,b,c,1, Jennika Greera,b,c, Levke Kööpa,b,c, Reto Trappitschd, Frank Gyngarde,f, Henner Busemanng, Colin Madeng, Janaína N. Ávilah, Andrew M. Davisa,b,c,i, and Rainer Wielerg aRobert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of Natural History, Chicago, IL 60605; bChicago Center for Cosmochemistry, The University of Chicago, Chicago, IL 60637; cDepartment of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637; dNuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550; ePhysics Department, Washington University, St. Louis, MO 63130; fCenter for NanoImaging, Harvard Medical School, Cambridge, MA 02139; gInstitute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland; hResearch School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia; and iEnrico Fermi Institute, The University of Chicago, Chicago, IL 60637 Edited by Mark H. Thiemens, University of California San Diego, La Jolla, CA, and approved December 17, 2019 (received for review March 15, 2019) We determined interstellar cosmic ray exposure ages of 40 large ago. These grains are identified as presolar by their large isotopic presolar silicon carbide grains extracted from the Murchison CM2 anomalies that exclude an origin in the Solar System (13, 14). meteorite. Our ages, based on cosmogenic Ne-21, range from 3.9 ± Presolar stardust grains are the oldest known solid samples 1.6 Ma to ∼3 ± 2 Ga before the start of the Solar System ∼4.6 Ga available for study in the laboratory, represent the small fraction ago.
    [Show full text]
  • Astronomy Astrophysics
    A&A 432, 515–529 (2005) Astronomy DOI: 10.1051/0004-6361:20040331 & c ESO 2005 Astrophysics PAH charge state distribution and DIB carriers: Implications from the line of sight toward HD 147889, R. Ruiterkamp1,N.L.J.Cox2,M.Spaans3, L. Kaper2,B.H.Foing4,F.Salama5, and P. Ehrenfreund2 1 Leiden Observatory, PO Box 9513, 2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Institute Anton Pannekoek, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 3 Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands 4 ESA Research and Scientific Support Department, PO Box 299, 2200 AG Noordwijk, The Netherlands 5 Space Science Division, NASA Ames Research Center, Mail Stop 245-6, Moffett Field, California 94035, USA Received 25 February 2004 / Accepted 29 September 2004 Abstract. We have computed physical parameters such as density, degree of ionization and temperature, constrained by a large observational data set on atomic and molecular species, for the line of sight toward the single cloud HD 147889. Diffuse interstellar bands (DIBs) produced along this line of sight are well documented and can be used to test the PAH hypothesis. To this effect, the charge state fractions of different polycyclic aromatic hydrocarbons (PAHs) are calculated in HD 147889 as a function of depth for the derived density, electron abundance and temperature profile. As input for the construction of these charge state distributions, the microscopic properties of the PAHs, e.g., ionization potential and electron affinity, are determined for a series of symmetry groups. The combination of a physical model for the chemical and thermal balance of the gas toward HD 147889 with a detailed treatment of the PAH charge state distribution, and laboratory and theoretical data on specific PAHs, allow us to compute electronic spectra of gas phase PAH molecules and to draw conclusions about the required properties of PAHs as DIB carriers.
    [Show full text]
  • What Lies Immediately Outside of the Heliosphere in the Very Local Interstellar Medium (VLISM): What Will ISP Detect?
    EPSC Abstracts Vol. 14, EPSC2020-68, 2020 https://doi.org/10.5194/epsc2020-68 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. What lies immediately outside of the heliosphere in the very local interstellar medium (VLISM): What will ISP detect? Jeffrey Linsky1 and Seth Redfield2 1University of Colorado, JILA, Boulder CO, United States of America ([email protected]) 2Wesleyan University, Astronomy Department, Middletown CT, United States of America ([email protected]) The Interstellar Probe (ISP) will provide the first direct measurements of interstellar gas and dust when it travels far beyond the heliopause where the solar wind no longer influences the ambient medium. We summarize in this presentation what we have been learning about the VLISM from 20 years of remote observations with the high-resolution spectrographs on the Hubble Space Telescope. Radial velocity measurements of interstellar absorption lines seen in the lines of sight to nearby stars allow us to measure the kinematics of gas flows in the VLISM. We find that the heliosphere is passing through a cluster of warm partially ionized interstellar clouds. The heliosphere is now at the edge of the Local Interstellar Cloud (LIC) and heading in the direction of the slighly cooler G cloud. Two other warm clouds (Blue and Aql) are very close to the heliosphere. We find that there is a large region of the sky with very low neutral hydrogen column density, which we call the hydrogen hole. In the direction of the hydrogen hole is the brightest photoionizing source, the star Epsilon Canis Majoris (CMa).
    [Show full text]
  • Physical Processes in the Interstellar Medium
    Physical Processes in the Interstellar Medium Ralf S. Klessen and Simon C. O. Glover Abstract Interstellar space is filled with a dilute mixture of charged particles, atoms, molecules and dust grains, called the interstellar medium (ISM). Understand- ing its physical properties and dynamical behavior is of pivotal importance to many areas of astronomy and astrophysics. Galaxy formation and evolu- tion, the formation of stars, cosmic nucleosynthesis, the origin of large com- plex, prebiotic molecules and the abundance, structure and growth of dust grains which constitute the fundamental building blocks of planets, all these processes are intimately coupled to the physics of the interstellar medium. However, despite its importance, its structure and evolution is still not fully understood. Observations reveal that the interstellar medium is highly tur- bulent, consists of different chemical phases, and is characterized by complex structure on all resolvable spatial and temporal scales. Our current numerical and theoretical models describe it as a strongly coupled system that is far from equilibrium and where the different components are intricately linked to- gether by complex feedback loops. Describing the interstellar medium is truly a multi-scale and multi-physics problem. In these lecture notes we introduce the microphysics necessary to better understand the interstellar medium. We review the relations between large-scale and small-scale dynamics, we con- sider turbulence as one of the key drivers of galactic evolution, and we review the physical processes that lead to the formation of dense molecular clouds and that govern stellar birth in their interior. Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, 69120 Heidelberg, Germany e-mail: [email protected], [email protected] 1 Contents Physical Processes in the Interstellar Medium ...............
    [Show full text]
  • Laboratory Astrophysics: from Observations to Interpretation
    April 14th – 19th 2019 Jesus College Cambridge UK IAU Symposium 350 Laboratory Astrophysics: From Observations to Interpretation Poster design by: D. Benoit, A. Dawes, E. Sciamma-O’Brien & H. Fraser Scientific Organizing Committee: Local Organizing Committee: Farid Salama (Chair) ★ P. Barklem ★ H. Fraser ★ T. Henning H. Fraser (Chair) ★ D. Benoit ★ R Coster ★ A. Dawes ★ S. Gärtner ★ C. Joblin ★ S. Kwok ★ H. Linnartz ★ L. Mashonkina ★ T. Millar ★ D. Heard ★ S. Ioppolo ★ N. Mason ★ A. Meijer★ P. Rimmer ★ ★ O. Shalabiea★ G. Vidali ★ F. Wa n g ★ G. Del-Zanna E. Sciamma-O’Brien ★ F. Salama ★ C. Wa lsh ★ G. Del-Zanna For more information and to contact us: www.astrochemistry.org.uk/IAU_S350 [email protected] @iaus350labastro 2 Abstract Book Scheduley Sunday 14th April . Pg. 2 Monday 15th April . Pg. 3 Tuesday 16th April . Pg. 4 Wednesday 17th April . Pg. 5 Thursday 18th April . Pg. 6 Friday 19th April . Pg. 7 List of Posters . .Pg. 8 Abstracts of Talks . .Pg. 12 Abstracts of Posters . Pg. 83 yPlenary talks (40') are indicated with `P', review talks (30') with `R', and invited talks (15') with `I'. Schedule Sunday 14th April 14:00 - 17:00 REGISTRATION 18:00 - 19:00 WELCOME RECEPTION 19:30 DINNER BAR OPEN UNTIL 23:00 Back to Table of Contents 2 Monday 15th April 09:00 { 10:00 REGISTRATION 09:00 WELCOME by F. Salama (Chair of SOC) SESSION 1 CHAIR: F. Salama 09:15 E. van Dishoeck (P) Laboratory astrophysics: key to understanding the Universe From Diffuse Clouds to Protostars: Outstanding Questions about the Evolution of 10:00 A.
    [Show full text]
  • The Interstellar Medium
    The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM • Total mass ~ 5 to 10 x 109 solar masses of about 5 – 10% of the mass of the Milky Way Galaxy interior to the suns orbit • Average density overall about 0.5 atoms/cm3 or ~10-24 g cm-3, but large variations are seen • Composition - essentially the same as the surfaces of Population I stars, but the gas may be ionized, neutral, or in molecules (or dust) H I – neutral atomic hydrogen H2 - molecular hydrogen H II – ionized hydrogen He I – neutral helium Carbon, nitrogen, oxygen, dust, molecules, etc. THE INTERSTELLAR MEDIUM • Energy input – starlight (especially O and B), supernovae, cosmic rays • Cooling – line radiation and infrared radiation from dust • Largely concentrated (in our Galaxy) in the disk Evolution in the ISM of the Galaxy Stellar winds Planetary Nebulae Supernovae + Circulation Stellar burial ground The The Stars Interstellar Big Medium Galaxy Bang Formation White Dwarfs Neutron stars Black holes Star Formation As a result the ISM is continually stirred, heated, and cooled – a dynamic environment And its composition evolves: 0.02 Total fraction of heavy elements Total 10 billion Time years THE LOCAL BUBBLE http://www.daviddarling.info/encyclopedia/L/Local_Bubble.html The “Local Bubble” is a region of low density (~0.05 cm-3 and Loop I bubble high temperature (~106 K) 600 ly has been inflated by numerous supernova explosions. It is Galactic Center about 300 light years long and 300 ly peanut-shaped. Its smallest dimension is in the plane of the Milky Way Galaxy.
    [Show full text]
  • Size and Scale Attendance Quiz II
    Size and Scale Attendance Quiz II Are you here today? Here! (a) yes (b) no (c) are we still here? Today’s Topics • “How do we know?” exercise • Size and Scale • What is the Universe made of? • How big are these things? • How do they compare to each other? • How can we organize objects to make sense of them? What is the Universe made of? Stars • Stars make up the vast majority of the visible mass of the Universe • A star is a large, glowing ball of gas that generates heat and light through nuclear fusion • Our Sun is a star Planets • According to the IAU, a planet is an object that 1. orbits a star 2. has sufficient self-gravity to make it round 3. has a mass below the minimum mass to trigger nuclear fusion 4. has cleared the neighborhood around its orbit • A dwarf planet (such as Pluto) fulfills all these definitions except 4 • Planets shine by reflected light • Planets may be rocky, icy, or gaseous in composition. Moons, Asteroids, and Comets • Moons (or satellites) are objects that orbit a planet • An asteroid is a relatively small and rocky object that orbits a star • A comet is a relatively small and icy object that orbits a star Solar (Star) System • A solar (star) system consists of a star and all the material that orbits it, including its planets and their moons Star Clusters • Most stars are found in clusters; there are two main types • Open clusters consist of a few thousand stars and are young (1-10 million years old) • Globular clusters are denser collections of 10s-100s of thousand stars, and are older (10-14 billion years
    [Show full text]
  • Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
    Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures.
    [Show full text]
  • Interstellar Medium (ISM)
    Interstellar Medium (ISM) Interstellar gas and dust Constituents of the ISM 60 40 15 Gas radiation field (CMB, ~ 1eV cm-3 various starlight, dust) ISM is very dilute, far from LTE Because the density of the ISM is extremely low, par>cles have a large mean free path 1 1 cm 3 λ 1015 − cm mfp ≈ n σ ≈ n H c H 3 Typical par>cle velocity: m v2 = k T 2 H B The collision >me scale is then: 1/2 1 λ T − n − τ 1.3 1011 H s c ≈ v ≈ × K 1 cm 3 − -3 Adop>ng T=100 K, nH=1 cm , we obtain about 1 collision in 500 years Local thermodynamic equilibrium (LTE) requires all species, including ions, electrons neutrals, and photons collide with each other sufficiently frequently. LTE applies inside the stars, NOT in the dilute ISM The mul>-phase interstellar gas • The various gas phases exist in pressure equilibrium: 3 4 3 n T 10 10 Kcm− · ≈ − (Kim et al. 1998) • The existence of a mul>-phase medium requires that energy flows through the system, e.g., by injec>on of energy through supernova explosions and/or stellar winds • The hot gas from SN explosions and stellar winds fills a large frac>on of the interstellar space, compressing the HI and molecular gas into a filamentary, fractal structure. Distribu>on of HI gas in the Large Magellanic Cloud Material Flow and Energy Balance of the ISM Infall from the 1 0.5M yr− intergalactic ∼ ⊙ Stars extragalactic medium gravitational and photons nuclear energies ISM 7 109M ∼ × ⊙ starlight stellar ejecta Star formation stellar winds photons kinetic energy 1 supernovae 1.3M yr− 1 ∼ ⊙ 0.5M yr− ISM ∼ ⊙ kinetic, thermal, chemical, STARS magnetic, gravitational and cosmic ray energies 1 0.2M yr− ∼ ⊙ radiative cooling stellar remnants extragalactic sky Abundance of elements in the solar neighborhood Hydrogen Asplund et al.
    [Show full text]
  • Abiogenesis and Photostimulated Heterogeneous Reactions in The
    Abiogenesis and Photostimulated Heterogeneous synthesize organic species in Interstellar Space on the Reactions in the Interstellar Medium and in the surface of dust particles (as they were on primitive Earth). Primitive Earth’s Atmosphere. Some peculiar features of heterogeneous photocatalytic Relevance to the Genesis of Life systems, namely (i) the considerable red shift of the spectral range of a given photoreaction compared with N. Serpone,1, 2 A. Emeline,1 V. Otroshchenko,3 one in homogeneous phase and (ii) the effect of spectral and V. Ryabchuk 4 selectivity of photocatalysts (5), favor the synthesis of 1 Department of Chemistry & Biochemistry, Concordia organic substrates under the above-mentioned natural University, Montreal (QC), Canada H3G 1M8. conditions. The first feature utilizes a considerably larger 2 Dipartimento di Chimica Organica, Universita di Pavia, fraction of Solar Energy than is otherwise possible in Pavia, Italia. homogeneous photochemical reactions. The second 3 Bach Institute of Biochemistry, Russian Academy of feature influences the dependence of the relative chemical Sciences, Moscow, Russia. yields of different products of a given reaction on the 4 Department of Physics, University of St.-Petersburg, wavelength of the actinic radiation. In particular, the St. Petersburg 198504, Russia. products of complete and partial oxidation of methane and other hydrocarbons result principally from the Studies of micrometeoritic particles captured by Earth photoexcitation of metal-oxide photocatalysts in the (i.e. ) absorption bands (strong at different geological times and discovered in Antarctica fundamental intrinsic have deduced that many organic substances necessary for absorption of UV and of blue light). More complex the Origin of Life on Earth are synthesized in Interstellar organic compounds are formed under irradiation of the catalysts in the absorption bands (weak to Space and are subsequently transported to Earth by extrinsic meteorites, comets, and cosmic dust (1).
    [Show full text]
  • A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars
    Project Icarus: A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars (Accepted for publication in Acta Astronautica) Ian A. Crawford* Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK *Tel: +44 207 679 3431; Email: [email protected] Abstract I review those properties of the interstellar medium within 15 light-years of the Sun which will be relevant for the planning of future rapid (v ≥ 0.1c) interstellar space missions to the nearest stars. As the detailed properties of the local interstellar medium (LISM) may only become apparent after interstellar probes have been able to make in situ measurements, the first such probes will have to be designed conservatively with respect to what can be learned about the LISM from the immediate environment of the Solar System. It follows that studies of interstellar vehicles should assume the lowest plausible density when considering braking devices which rely on transferring momentum from the vehicle to the surrounding medium, but the highest plausible densities when considering possible damage caused by impact of the vehicle with interstellar material. Some suggestions for working values of these parameters are provided. This paper is a submission of the Project Icarus Study Group. Keywords: Interstellar medium; Interstellar travel 1 Introduction The growing realisation that planets are common companions of stars [1,2] has reinvigorated astronautical studies of how they might be explored using interstellar space probes. The history of Solar System exploration to-date shows us that spacecraft are required for the detailed study of planets, and it seems clear that we will eventually require spacecraft to make in situ studies of other planetary systems as well.
    [Show full text]