(SR&T) Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cosmic Questions, Answers Pending
special section | cosmic questions, Answers pending Cosmic questions, answers pending throughout human history, great missions of mission reveal the exploration have been inspired by curiosity, : the desire to find out about unknown realms. secrets of the universe such missions have taken explorers across wide oceans and far below their surfaces, THE OBJECTIVE deep into jungles, high onto mountain peaks For millennia, people have turned to the heavens in search of clues to nature’s mysteries. truth seekers from ages past to the present day and over vast stretches of ice to the earth’s have found that the earth is not the center of the universe, that polar extremities. countless galaxies dot the abyss of space, that an unknown form of today’s greatest exploratory mission is no matter and dark forces are at work in shaping the cosmos. Yet despite longer earthbound. it’s the scientific quest to these heroic efforts, big cosmological questions remain unresolved: explain the cosmos, to answer the grandest What happened before the Big Bang? ............................... Page 22 questions about the universe as a whole. What is the universe made of? ......................................... Page 24 what is the identity, for example, of the Is there a theory of everything? ....................................... Page 26 Are space and time fundamental? .................................... Page 28 “dark” ingredients in the cosmic recipe, com- What is the fate of the universe? ..................................... Page 30 posing 95 percent of the -
Against Transhumanism the Delusion of Technological Transcendence
Edition 1.0 Against Transhumanism The delusion of technological transcendence Richard A.L. Jones Preface About the author Richard Jones has written extensively on both the technical aspects of nanotechnology and its social and ethical implications; his book “Soft Machines: nanotechnology and life” is published by OUP. He has a first degree and PhD in physics from the University of Cam- bridge; after postdoctoral work at Cornell University he has held positions as Lecturer in Physics at Cambridge University and Profes- sor of Physics at Sheffield. His work as an experimental physicist concentrates on the properties of biological and synthetic macro- molecules at interfaces; he was elected a Fellow of the Royal Society in 2006 and was awarded the Institute of Physics’s Tabor Medal for Nanoscience in 2009. His blog, on nanotechnology and science policy, can be found at Soft Machines. About this ebook This short work brings together some pieces that have previously appeared on my blog Soft Machines (chapters 2,4 and 5). Chapter 3 is adapted from an early draft of a piece that, in a much revised form, appeared in a special issue of the magazine IEEE Spectrum de- voted to the Singularity, under the title “Rupturing the Nanotech Rapture”. Version 1.0, 15 January 2016 The cover picture is The Ascension, by Benjamin West (1801). Source: Wikimedia Commons ii Transhumanism, technological change, and the Singularity 1 Rapid technological progress – progress that is obvious by setting off a runaway climate change event, that it will be no on the scale of an individual lifetime - is something we take longer compatible with civilization. -
Perspective in Search of Planets and Life Around Other Stars
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5353–5355, May 1999 Perspective In search of planets and life around other stars Jonathan I. Lunine* Reparto di Planetologia, Consiglio Nazionale delle Ricerche, Istituto di Astrofisica Spaziale, Rome I-00133, Italy The discovery of over a dozen low-mass companions to nearby stars has intensified scientific and public interest in a longer term search for habitable planets like our own. However, the nature of the detected companions, and in particular whether they resemble Jupiter in properties and origin, remains undetermined. The first detection of a planet orbiting around another star like Table 1. Jovian-mass planets around main-sequence stars our Sun came in 1995, after decades of null results and false Star’s Semi-major Period, alarms. As of this writing, 18 objects have been found with masses Star mass axis, AU days Eccentricity* Mass† potentially less than 12 times that of Jupiter, but none less than 40% of Jupiter’s mass, around main-sequence stars (1) (see Table HD187123 1.00 0.042 3.097 0.03 0.57 1). In addition, several planetary-mass bodies have been detected HD75289 1.05 0.046 3.5097 0.00 0.42 orbiting pulsars. Although these are interesting as well, the exotic Tau Boo 1.20 0.047 3.3126 0.00 3.66 environments around neutron stars make it unlikely that their 51 Peg 0.98 0.051 4.2308 0.01 0.44 companions are abodes for life. It is the success in finding planets Ups And 1.10 0.054 4.62 0.15 0.61 around Sun-like stars that provides a technological stepping stone HD217107 0.96 0.072 7.11 0.14 1.28 ‡ to one of the great aspirations of humanity: to find a world like 55 Cnc 0.90 0.110 14.656 0.04 1.5–3 the Earth orbiting around a distant star. -
Top 10 Discoveries by ESO Telescopes
Top 10 Discoveries by ESO Telescopes • European Southern Observatory – reaching new heights in astronomy • Exploring the Universe from the Atacama Desert, in Chile since 1964 • ESO is the most productive astronomical observatory in the world TOP 10 discoveries by ESO telescopes, 26 April 2011 La Silla Observatory: ESO’s first observatory • Two of the most productive 4-metre class telescopes in the world – ESO 3.6-metre telescope, since 1976 – The New Technology Telescope (NTT, 3.58 m), since 1989 • 300 refereed publications per year TOP 10 discoveries by ESO telescopes, 26 April 2011 ESO’s top 10 discoveries 1. Stars orbiting the Milky Way black hole 2. Accelerating Universe 3. First image of an exoplanet 4. Gamma-ray bursts — the connections with supernovae and merging neutron stars 5. Cosmic temperature independently measured 6. Oldest star known in the Milky Way 7. Flares from the supermassive black hole at the centre of the Milky Way 8. Direct measurements of the spectra of exoplanets and their atmospheres 9. Richest planetary system 10. Milky Way stellar motions More info in: http://www.eso.org/public/science/top10.html TOP 10 discoveries by ESO telescopes, 26 April 2011 1. Stars orbiting the Milky Way black hole TOP 10 discoveries by ESO telescopes, 26 April 2011 1. Stars orbiting the Milky Way black hole • The discovery: unprecedented 16-year long study tracks stars orbiting the Milky Way black hole • When: a 16-year long campaign started in 1992, with 50 nights of observations in total • Instruments / telescopes: – SHARP / NTT, La Silla Observatory – NACO / Yepun (UT4), VLT • More info in press releases eso0226 and eso0846: http://www.eso.org/public/news/eso0226/ http://www.eso.org/public/news/eso0846/ TOP 10 discoveries by ESO telescopes, 26 April 2011 1. -
What Lies Immediately Outside of the Heliosphere in the Very Local Interstellar Medium (VLISM): What Will ISP Detect?
EPSC Abstracts Vol. 14, EPSC2020-68, 2020 https://doi.org/10.5194/epsc2020-68 Europlanet Science Congress 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. What lies immediately outside of the heliosphere in the very local interstellar medium (VLISM): What will ISP detect? Jeffrey Linsky1 and Seth Redfield2 1University of Colorado, JILA, Boulder CO, United States of America ([email protected]) 2Wesleyan University, Astronomy Department, Middletown CT, United States of America ([email protected]) The Interstellar Probe (ISP) will provide the first direct measurements of interstellar gas and dust when it travels far beyond the heliopause where the solar wind no longer influences the ambient medium. We summarize in this presentation what we have been learning about the VLISM from 20 years of remote observations with the high-resolution spectrographs on the Hubble Space Telescope. Radial velocity measurements of interstellar absorption lines seen in the lines of sight to nearby stars allow us to measure the kinematics of gas flows in the VLISM. We find that the heliosphere is passing through a cluster of warm partially ionized interstellar clouds. The heliosphere is now at the edge of the Local Interstellar Cloud (LIC) and heading in the direction of the slighly cooler G cloud. Two other warm clouds (Blue and Aql) are very close to the heliosphere. We find that there is a large region of the sky with very low neutral hydrogen column density, which we call the hydrogen hole. In the direction of the hydrogen hole is the brightest photoionizing source, the star Epsilon Canis Majoris (CMa). -
The Interstellar Medium
The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM • Total mass ~ 5 to 10 x 109 solar masses of about 5 – 10% of the mass of the Milky Way Galaxy interior to the suns orbit • Average density overall about 0.5 atoms/cm3 or ~10-24 g cm-3, but large variations are seen • Composition - essentially the same as the surfaces of Population I stars, but the gas may be ionized, neutral, or in molecules (or dust) H I – neutral atomic hydrogen H2 - molecular hydrogen H II – ionized hydrogen He I – neutral helium Carbon, nitrogen, oxygen, dust, molecules, etc. THE INTERSTELLAR MEDIUM • Energy input – starlight (especially O and B), supernovae, cosmic rays • Cooling – line radiation and infrared radiation from dust • Largely concentrated (in our Galaxy) in the disk Evolution in the ISM of the Galaxy Stellar winds Planetary Nebulae Supernovae + Circulation Stellar burial ground The The Stars Interstellar Big Medium Galaxy Bang Formation White Dwarfs Neutron stars Black holes Star Formation As a result the ISM is continually stirred, heated, and cooled – a dynamic environment And its composition evolves: 0.02 Total fraction of heavy elements Total 10 billion Time years THE LOCAL BUBBLE http://www.daviddarling.info/encyclopedia/L/Local_Bubble.html The “Local Bubble” is a region of low density (~0.05 cm-3 and Loop I bubble high temperature (~106 K) 600 ly has been inflated by numerous supernova explosions. It is Galactic Center about 300 light years long and 300 ly peanut-shaped. Its smallest dimension is in the plane of the Milky Way Galaxy. -
Size and Scale Attendance Quiz II
Size and Scale Attendance Quiz II Are you here today? Here! (a) yes (b) no (c) are we still here? Today’s Topics • “How do we know?” exercise • Size and Scale • What is the Universe made of? • How big are these things? • How do they compare to each other? • How can we organize objects to make sense of them? What is the Universe made of? Stars • Stars make up the vast majority of the visible mass of the Universe • A star is a large, glowing ball of gas that generates heat and light through nuclear fusion • Our Sun is a star Planets • According to the IAU, a planet is an object that 1. orbits a star 2. has sufficient self-gravity to make it round 3. has a mass below the minimum mass to trigger nuclear fusion 4. has cleared the neighborhood around its orbit • A dwarf planet (such as Pluto) fulfills all these definitions except 4 • Planets shine by reflected light • Planets may be rocky, icy, or gaseous in composition. Moons, Asteroids, and Comets • Moons (or satellites) are objects that orbit a planet • An asteroid is a relatively small and rocky object that orbits a star • A comet is a relatively small and icy object that orbits a star Solar (Star) System • A solar (star) system consists of a star and all the material that orbits it, including its planets and their moons Star Clusters • Most stars are found in clusters; there are two main types • Open clusters consist of a few thousand stars and are young (1-10 million years old) • Globular clusters are denser collections of 10s-100s of thousand stars, and are older (10-14 billion years -
Arxiv:1910.06396V4 [Physics.Pop-Ph] 12 Jun 2021 ∗ Rmtv Ieeitdi H R-Oa Eua(Vni H C System)
Nebula-Relay Hypothesis: Primitive Life in Nebula and Origin of Life on Earth Lei Feng1,2, ∗ 1Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023 2Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing University – Purple Mountain Observatory, Nanjing 210093, China Abstract A modified version of panspermia theory, named Nebula-Relay hypothesis or local panspermia, is introduced to explain the origin of life on Earth. Primitive life, acting as the seeds of life on Earth, originated at pre-solar epoch through physicochemical processes and then filled in the pre- solar nebula after the death of pre-solar star. Then the history of life on the Earth can be divided into three epochs: the formation of primitive life in the pre-solar epoch; pre-solar nebula epoch; the formation of solar system and the Earth age of life. The main prediction of our model is that primitive life existed in the pre-solar nebula (even in the current nebulas) and the celestial body formed therein (i.e. solar system). arXiv:1910.06396v4 [physics.pop-ph] 12 Jun 2021 ∗Electronic address: [email protected] 1 I. INTRODUCTION Generally speaking, there are several types of models to interpret the origin of life on Earth. The two most persuasive and popular models are the abiogenesis [1, 2] and pansper- mia theory [3]. The modern version of abiogenesis is also known as chemical origin theory introduced by Oparin in the 1920s [1], and Haldane proposed a similar theory independently [2] at almost the same time. In this theory, the organic compounds are naturally produced from inorganic matters through physicochemical processes and then reassembled into much more complex living creatures. -
SUMMARY. Part I: the Fractal 5D Organic Universe. I. the Fractal Universe, Its 5D Metric
SUMMARY. Part I: The Fractal 5D Organic Universe. I. The fractal Universe, its 5D Metric. II. Leibniz vs. Newton: Vital, Topologic Space. Its 3±¡ Dimotions. III. Absolute relativity. S=T. The Galilean Paradox. IV. The 5 Postulates of Non-Euclidean, Non-Aristotelian, vital topology V. Cyclical time. Its 3 ages=states of matter. Worldcycles of existence. VI. The Stientific method. Planes of Formal Stiences :¡logic, existential Algebra Part II: Astrophysics. ∆+4,3 scales: Cosmology & Astrophysics: Scalar big-bangs. Galatoms. Hyper-universe. I. Falsifications of the cosmic big-bang. Æntropic man: Science is culture. II. The little bang. III. The ages of the galaxy . IV The ‘Galatom’: Scalar Unification of the 5 forces as Dimotions of the galaxy. V. The ‘Galacell’: A galactic organism. Its symmetries of scale and topologies in space. VI. Light Stars, its topologic, organic parts. VII. Black stars. Thermodynamics of black holes. ∆-4,3 scales: Quantum physics. Comments on the right model. I. Broglie’s theory. 1 5TH DIMENSION METRIC AND THE NESTED UNIVERSE. When we google the 5th dimension one gets surprised by the quantity of speculative answers to a question, which is no longer pseudo- science, but has been for two decades a field of research in systems sciences rather than physics (: no, the answers of google, considering the fifth dimension the upper-self etc. seem to be very popular, but are to 5D science more like a medium in earlier XX c. talking about the 4th dimension as astrological awareness, for lack of understanding of Einstein’s metric functions of the 4th dimension). This is the key word that differentiates pseudo-science from a proper scientific description of a dimension of space-time, the existence of a metric function that describes a dimension and allows to travel through it. -
Death from the Skies!
Death from the Skies! Kristi Schneck SLAC Association for Student Seminars 7/11/12 The universe is trying to kill us! Well, not actively... BUT • Near-Earth Asteroids • Solar Flares and Coronal Mass Ejections • Supernovae • Gamma Ray Bursts • Black Holes 2 of 18 Asteroids and Near-Earth Objects 3 of 18 Hollywood|Armageddon 4 of 18 Reality • The earth is pummeled by 20-40 tons of material every day • Chicxulub impact{extinction of dinosaurs • 1908 Tunguska event (air burst of ∼100 m asteroid above Siberia) 5 of 18 Reality|99942 Apophis 6 of 18 The Torino Scale 7 of 18 What can we do about this? • Blow it up, redirect it, etc... http://www.b612foundation.org/ 8 of 18 Death by Sun 9 of 18 Hollywood|Knowing 10 of 18 Hollywood (again)|2012 The neutrinos have mutated! http://www.youtube.com/watch?v=uXqUcuE8fNo 11 of 18 Reality • Charged particles from CMEs mess with satellites and power grid ◦ March 1989|major power outages in NJ and Canada ◦ Damage only increases as we use more power • Depletion of ozone and production of NO2 in atmosphere • \Little Ice Age" in Europe (17th Century) correlated with very low sunspot activity ◦ Many other factors contributed to this.... 12 of 18 Supernovae • ∼20 stars within 1000 ly could potentially become supernovae • For 20 M star 10 ly away, 40 million tons of material would hit us ◦ < One ounce per square foot over Earth's surface ◦ Inverse-square law saves the day! • Other stuff: neutrinos, X-rays, gammas ◦ Earth-bound people are pretty safe safe, but astronauts? 13 of 18 Gamma Ray Bursts • Discovered while -
Siyakha N Mthunzi
Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges Siyakha Njabuliso Mthunzi STAFFORDSHIRE UNIVERSITY A Thesis submitted in fulfilment of the requirement of Staffordshire University for the award of the degree of Doctor of Philosophy 2019 To my parents and my family In memory of my father, the late J.G. Mthunzi and to my mother M.G Mthunzi , who gave me invaluable educational opportunities and boundless permanence throughout my life. ii Declaration This thesis contains no material which has been accepted for the award of any other degree or diploma, except where due reference is made in the text of the thesis. To the best of my knowledge, this thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis. Siyakha Njabuliso Mthunzi iii Acknowledgements Deepest gratitude to my principal supervisor Professor Elhadj Benkhelifa for the insightful guidance and supporting my thesis actively throughout the PhD journey. The continuous cooperation, relentless drive and exchange of ideas made this Thesis possible. Thanks to my secondary supervisor Dr Tomasz Bosakowski for the support and guidance. A special thanks to my colleagues in the Cloud Computing and Applications Research Laboratory at Staffordshire University, for the interesting discussions and constructive feedback. Many thanks especially to Lavorel Anaïs Léa Céline for the collaboration. No words can express my gratitude and thanks to my entire family, for the love and support, and the genuine caring you show whatever the weather. Your extraordinary self- sacrifice saw me through overwhelming obstacles. You are my heroes! I am grateful to my friends whose support and encouragement always motivates me to do better. -
A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars
Project Icarus: A Review of Local Interstellar Medium Properties of Relevance for Space Missions to the Nearest Stars (Accepted for publication in Acta Astronautica) Ian A. Crawford* Department of Earth and Planetary Sciences, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK *Tel: +44 207 679 3431; Email: [email protected] Abstract I review those properties of the interstellar medium within 15 light-years of the Sun which will be relevant for the planning of future rapid (v ≥ 0.1c) interstellar space missions to the nearest stars. As the detailed properties of the local interstellar medium (LISM) may only become apparent after interstellar probes have been able to make in situ measurements, the first such probes will have to be designed conservatively with respect to what can be learned about the LISM from the immediate environment of the Solar System. It follows that studies of interstellar vehicles should assume the lowest plausible density when considering braking devices which rely on transferring momentum from the vehicle to the surrounding medium, but the highest plausible densities when considering possible damage caused by impact of the vehicle with interstellar material. Some suggestions for working values of these parameters are provided. This paper is a submission of the Project Icarus Study Group. Keywords: Interstellar medium; Interstellar travel 1 Introduction The growing realisation that planets are common companions of stars [1,2] has reinvigorated astronautical studies of how they might be explored using interstellar space probes. The history of Solar System exploration to-date shows us that spacecraft are required for the detailed study of planets, and it seems clear that we will eventually require spacecraft to make in situ studies of other planetary systems as well.