Taxonomy and Functional Roles of Lichen-Associated Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and Functional Roles of Lichen-Associated Bacteria The lichen-associated microbiome: taxonomy and functional roles of lichen-associated bacteria Margrét Auður Sigurbjörnsdóttir Faculty of Life and Environmental Sciences University of Iceland 2016 The lichen-associated microbiome: taxonomy and functional roles of lichen-associated bacteria Margrét Auður Sigurbjörnsdóttir Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Biology Supervisors Professor Oddur Vilhelmsson Professor Ólafur S. Andrésson PhD Committee Professor Oddur Vilhelmsson Professor Ólafur S. Andrésson Professor Kristinn P. Magnússon Starri Heiðmarsson Opponents Gabrielle Berg Viggó Marteinsson Faculty of Life and Environmental Sciences School of Engineering and Natural Sciences University of Iceland Reykjavik, January 2016 The lichen-associated microbiome: taxonomy and functional roles of lichen-associated bacteria The biodiversity of bacterial lichen-associates (Short title) Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Biology Copyright © 2016 Margrét Auður Sigurbjörnsdóttir All rights reserved Faculty of Life and Environmental Sciences School of Engineering and Natural Sciences University of Iceland Sturlugötu 7 101, Reykjavik Iceland Telephone: 525 4000 Bibliographic information: Margrét Auður Sigurbjörnsdóttir, 2016, The lichen-associated microbiome: taxonomy and functional roles of lichen-associated bacteria, PhD dissertation, Faculty of Life and Environmental Sciences, University of Iceland, 199 pp. ISBN 978-9935-9283-7-5 Printing: Háskólaprent Reykjavik, Iceland, January 2016 ii Abstract Although lichens are generally characterized as the symbiotic association of a fungus (mycobiont) and a photobiont (green algae and/or cyanobacteria), species-specific communitites of other endolichenic bacteria, typically dominated by Proteobacteria, can also be found within the symbiosis. The roles that the non-phototrophic microbiota of lichens play in the symbiotic association is, however, not fully understood. This thesis describes studies that aim to characterize the non-phototrophic microbiota of lichens and elucidate some of their roles in the symbiotic association. Firstly, bacteria were cultured from four saxicolous seashore lichens; Hydropunctaria maura, Verrucaria ceuthocarpa, Caloplaca verruculifera and Lecanora helicopis, which are all commonly found along the Icelandic seashore. A total of 168 strains were isolated and selected isolates were further analysed. Secondly, lichen thalli from the membranous dog lichen, Peltigera membranacea, were investigated using culture- independent techniques, as well as characterizing cultured isolates and some of the roles the constituent bacteria play in the symbiotic association elucidated. Total DNA was extracted and a metagenomic library of 150 thousand contigs constructed and binned against 15 reference genomes. The BlastX algorithm was used for analyses of the selected contigs against the protein database. Taxonomically, the majority of the bacterial associates belong to Alphaproteobacteria, although members of Acidobacteria, Actinobacteria, Bacteroidetes and Verrucomicrobia are also present. Analysis of 28,000 bacterial contigs from the Peltigera membranacea metagenome yielded multiple hits on several genes involved in lichen secondary metabolite resistance, inorganic phosphate mobilization, biopolymer degradation and several other potentially important functions in thallus colonization and symbiosis. Samples of P. membranacea thalli were plated on various media types and 113 bacterial strains isolated. Phenotypic analyses of selected strains indicates that hydrolytic activity is common among these bacteria, as is inorganic phosphate mobilization and nitrogen fixation. Scavenging of organic nutrients may also constitute an important role for Peltigera-associated bacteria, with many of the strains producing strong biosurfactants and being able to degrade naphthalene. iii iv Útdráttur Fléttur eru sambýli sveppa og ljóstillífandi lífvera, ýmist grænþörunga eða blábaktería. Í þeim er þó einnig að finna stórt og fjölbreytt samfélag annarra baktería, en hin ljósóháða bakteríubíóta fléttna hefur afar lítið verið rannsökuð þar til á allra síðustu árum. Í fyrri hluta verkefnisins var sýnum af fjórum íslenskum strandfléttum (Hydropunctaria maura, Verrucaria ceuthocarpa, Caloplaca verruculifera and Lecanora helicopis) safnað og ræktanleg bakteríubíóta þeirra greind. Einangraðir voru 168 bakteríustofnar og valdir stofnar teknir til greiningar. Í síðari hluta verkefnisins var sýnum af himnuskóf, Peltigera membranacea, safnað. Erfðaefni fléttunnar var einangrað og raðgreint. Gerður var gagnagrunnur samfellna (contigs) sem flokkaðar voru úr rúmlega 150 þ. samfella samkvæmt einsleitni við 15 valin bakteríuerfðamengi. BLASTx algóriþmi var notaður til að leita gegn þekktum röðum í prótein gagnabanka. Niðurstöður sýna að meirihluti bakteríubíótunnar tilheyrir Alphaproteobacteria en jafnframt er þar að finna Acidobacteria, Actinobacteria, Bacteroidetes og Verrucomicrobia. Einnig sést að þar er að finna gen sem taka þátt í grunnefnaskiptum, áreitissvörun (stress response), boðferlum (signal transduction), niðurbroti fjölliða, nýmyndun próteina og DNA og fleira. Að auki var sýni úr P. membranacea sáð á mismunandi ætistegundir. Einangraðir stofnar úr himnuskóf voru samtals 113 og voru framkvæmd ýmis greiningapróf á þeim, t.a.m. niðurbrot fjölliða og olíuefna, og fleiri lífefnafræðilegir þættir. v vi To my family and my friends… …for their incredible support over the years vii viii List of papers The thesis is based on four papers of which two are published and two are submitted to scientific journals. The papers will be referred in the text by their respective numbers as following: Paper I: Sigurbjörnsdóttir, M. A., Heiðmarsson, S., Jónsdóttir, A. R. and Vilhelmsson, O. 2014. Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging. Canadian Journal of Microbiology, 60: 307-317. Paper II: Sigurbjörnsdóttir, M. A., Andrésson, Ó. S. and Vilhelmsson, O. 2015. Analysis of the Peltigera membranacea metagenome indicates that lichen-associated bacteria are involved in phosphate solubilization. Microbiology, 161: 989-996. doi: 10.1099/mic.0.000069 Paper III: Sigurbjörnsdóttir, M. A. & Vilhelmsson, O. (SUBMITTED). Culturable phosphate-mobilizing, biosurfactant-producing and biodegradative bacteria associated with a sub-Arctic, terricolous lichen, Peltigera membranacea. Submitted to FEMS Microbial Ecology November 24th 2015. Paper IV (Invited mini-review): Sigurbjörnsdóttir, M. A., Andrésson, Ó. S., Grube, M. & Vilhelmsson, O. (IN PRESS). Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: a review. Accepted for publication in World Journal of Microbiology Biotechnology. All papers are reprinted by kind permission of the publishers. Peer reviewed paper not included in the thesis: Paper V: Vilhelmsson, O, Sigurbjörnsdóttir, M. A., Grube, M. & Höfte, M. (IN PRESS). Are lichens natural reservoir for plant pathogens? Accepted for publication in Molecular Plant Pathology. ix x Declaration of contribution Paper I Jónsdóttir and Vilhelmsson designed the study and were responsible for collecting samples with Heiðmarsson. Jónsdóttir was responsible for the isolation procedure and analysing the data. Sigurbjörnsdóttir was responsible for sample collection when repeating the study and wrote the first draft of the paper, with supervision from Vilhelmsson and Heiðmarsson. Vilhelmsson and Heiðmarsson critically revised the manuscript, edited it and approved the final version of manuscript. Paper II Andrésson designed the study, collected samples, and was responsible for DNA isolation. Snæbjarnarson constructed the metagenomic database with assistance from Andrésson and Vilhelmsson. Sigurbjörnsdóttir analysed the bacterial metagenome obtained from the larger metagenomic dataset, with supervison from Vilhelmsson. Sigurbjörnsdóttir wrote the first draft of the paper, with supervision from Vilhelmsson and Andrésson, which critically revised the manuscript. Sigurbjörnsdóttir worked on the final version of the manuscript. All authors gave final approval of the manuscript to be published. Paper III Sigurbjörnsdóttir designed the study and was responsible for collecting samples, with supervision from Vilhelmsson. Ásgeirsdóttir, Jónsdóttir, Þorsteinsdóttir, and Kjartansdóttir assisted with strain isolation and phenotypic analysis, with supervision from Sigurbjörnsdóttir. Sigurbjörnsdóttir was responsible for analysing the data and writing the first draft of paper, with supervision from Vilhelmsson. Vilhelmsson critically revised the manuscript and edited it. Sigurbjörnsdóttir worked on the final version and Vilhelmsson approved the final version of manuscript to be published. xi Paper IV Sigurbjörnsdóttir was responsible for writing the paper. Vilhelmsson and Andrésson critically revised the manuscript and edited it. Sigurbjörnsdóttir worked on the final version and all authors approved the final version submitted. xii Table of Contents ABSTRACT III ÚTDRÁTTUR V LIST OF PAPERS IX DECLARATION OF CONTRIBUTION XI LIST OF FIGURES XV LIST OF TABLES XVI ACKNOWLEDGEMENTS XVII 1 INTRODUCTION 1 1.1 Symbiosis 1 1.2 Lichens 1 1.3 General description of the lichen symbiosis 2 1.4 Lichen morphology 4 1.4.1 Crustose lichens 5 1.4.2 Foliose lichens 6 1.4.3 Fruticose lichens 7 1.5 Lichen growth and resources 8 1.5.1 Water 9 1.5.2 Carbon 9 1.5.3 Elements 10 1.6 Lichen metabolites
Recommended publications
  • Phylogeny of the Cetrarioid Core (Parmeliaceae) Based on Five
    The Lichenologist 41(5): 489–511 (2009) © 2009 British Lichen Society doi:10.1017/S0024282909990090 Printed in the United Kingdom Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers Arne THELL, Filip HÖGNABBA, John A. ELIX, Tassilo FEUERER, Ingvar KÄRNEFELT, Leena MYLLYS, Tiina RANDLANE, Andres SAAG, Soili STENROOS, Teuvo AHTI and Mark R. D. SEAWARD Abstract: Fourteen genera belong to a monophyletic core of cetrarioid lichens, Ahtiana, Allocetraria, Arctocetraria, Cetraria, Cetrariella, Cetreliopsis, Flavocetraria, Kaernefeltia, Masonhalea, Nephromopsis, Tuckermanella, Tuckermannopsis, Usnocetraria and Vulpicida. A total of 71 samples representing 65 species (of 90 worldwide) and all type species of the genera are included in phylogentic analyses based on a complete ITS matrix and incomplete sets of group I intron, -tubulin, GAPDH and mtSSU sequences. Eleven of the species included in the study are analysed phylogenetically for the first time, and of the 178 sequences, 67 are newly constructed. Two phylogenetic trees, one based solely on the complete ITS-matrix and a second based on total information, are similar, but not entirely identical. About half of the species are gathered in a strongly supported clade composed of the genera Allocetraria, Cetraria s. str., Cetrariella and Vulpicida. Arctocetraria, Cetreliopsis, Kaernefeltia and Tuckermanella are monophyletic genera, whereas Cetraria, Flavocetraria and Tuckermannopsis are polyphyletic. The taxonomy in current use is compared with the phylogenetic results, and future, probable or potential adjustments to the phylogeny are discussed. The single non-DNA character with a strong correlation to phylogeny based on DNA-sequences is conidial shape. The secondary chemistry of the poorly known species Cetraria annae is analyzed for the first time; the cortex contains usnic acid and atranorin, whereas isonephrosterinic, nephrosterinic, lichesterinic, protolichesterinic and squamatic acids occur in the medulla.
    [Show full text]
  • Diversity and Distribution of Lichen-Associated Fungi in the Ny-Ålesund Region (Svalbard, High Arctic) As Revealed by 454 Pyrosequencing
    www.nature.com/scientificreports OPEN Diversity and distribution of lichen- associated fungi in the Ny-Ålesund Region (Svalbard, High Arctic) as Received: 31 March 2015 Accepted: 20 August 2015 revealed by 454 pyrosequencing Published: 14 October 2015 Tao Zhang1, Xin-Li Wei2, Yu-Qin Zhang1, Hong-Yu Liu1 & Li-Yan Yu1 This study assessed the diversity and distribution of fungal communities associated with seven lichen species in the Ny-Ålesund Region (Svalbard, High Arctic) using Roche 454 pyrosequencing with fungal-specific primers targeting the internal transcribed spacer (ITS) region of the ribosomal rRNA gene. Lichen-associated fungal communities showed high diversity, with a total of 42,259 reads belonging to 370 operational taxonomic units (OTUs) being found. Of these OTUs, 294 belonged to Ascomycota, 54 to Basidiomycota, 2 to Zygomycota, and 20 to unknown fungi. Leotiomycetes, Dothideomycetes, and Eurotiomycetes were the major classes, whereas the dominant orders were Helotiales, Capnodiales, and Chaetothyriales. Interestingly, most fungal OTUs were closely related to fungi from various habitats (e.g., soil, rock, plant tissues) in the Arctic, Antarctic and alpine regions, which suggests that living in association with lichen thalli may be a transient stage of life cycle for these fungi and that long-distance dispersal may be important to the fungi in the Arctic. In addition, host-related factors shaped the lichen-associated fungal communities in this region. Taken together, these results suggest that lichens thalli act as reservoirs of diverse fungi from various niches, which may improve our understanding of fungal evolution and ecology in the Arctic. The Arctic is one of the most pristine regions of the planet, and its environment exhibits extreme condi- tions (e.g., low temperature, strong winds, permafrost, and long periods of darkness and light) and offers unique opportunities to explore extremophiles.
    [Show full text]
  • The Puzzle of Lichen Symbiosis
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503 The puzzle of lichen symbiosis Pieces from Thamnolia IOANA ONUT, -BRÄNNSTRÖM ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9887-0 UPPSALA urn:nbn:se:uu:diva-319639 2017 Dissertation presented at Uppsala University to be publicly examined in Lindhalsalen, EBC, Norbyvägen 14, Uppsala, Thursday, 1 June 2017 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Anne Pringle (University of Wisconsin-Madison, Department of Botany). Abstract Onuț-Brännström, I. 2017. The puzzle of lichen symbiosis. Pieces from Thamnolia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1503. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9887-0. Symbiosis brought important evolutionary novelties to life on Earth. Lichens, the symbiotic entities formed by fungi, photosynthetic organisms and bacteria, represent an example of a successful adaptation in surviving hostile environments. Yet many aspects of the lichen symbiosis remain unexplored. This thesis aims at bringing insights into lichen biology and the importance of symbiosis in adaptation. I am using as model system a successful colonizer of tundra and alpine environments, the worm lichens Thamnolia, which seem to only reproduce vegetatively through symbiotic propagules. When the genetic architecture of the mating locus of the symbiotic fungal partner was analyzed with genomic and transcriptomic data, a sexual self-incompatible life style was revealed. However, a screen of the mating types ratios across natural populations detected only one of the mating types, suggesting that Thamnolia has no potential for sexual reproduction because of lack of mating partners.
    [Show full text]
  • St Kilda Lichen Survey April 2014
    A REPORT TO NATIONAL TRUST FOR SCOTLAND St Kilda Lichen Survey April 2014 Andy Acton, Brian Coppins, John Douglass & Steve Price Looking down to Village Bay, St. Kilda from Glacan Conachair Andy Acton [email protected] Brian Coppins [email protected] St. Kilda Lichen Survey Andy Acton, Brian Coppins, John Douglass, Steve Price Table of Contents 1 INTRODUCTION ............................................................................................................ 3 1.1 Background............................................................................................................. 3 1.2 Study areas............................................................................................................. 4 2 METHODOLOGY ........................................................................................................... 6 2.1 Field survey ............................................................................................................ 6 2.2 Data collation, laboratory work ................................................................................ 6 2.3 Ecological importance ............................................................................................. 7 2.4 Constraints ............................................................................................................. 7 3 RESULTS SUMMARY ................................................................................................... 8 4 MARITIME GRASSLAND (INCLUDING SWARDS DOMINATED BY PLANTAGO MARITIMA AND ARMERIA
    [Show full text]
  • Checklist of Lichenicolous Fungi and Lichenicolous Lichens of Svalbard, Including New Species, New Records and Revisions
    Herzogia 26 (2), 2013: 323 –359 323 Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions Mikhail P. Zhurbenko* & Wolfgang von Brackel Abstract: Zhurbenko, M. P. & Brackel, W. v. 2013. Checklist of lichenicolous fungi and lichenicolous lichens of Svalbard, including new species, new records and revisions. – Herzogia 26: 323 –359. Hainesia bryonorae Zhurb. (on Bryonora castanea), Lichenochora caloplacae Zhurb. (on Caloplaca species), Sphaerellothecium epilecanora Zhurb. (on Lecanora epibryon), and Trimmatostroma cetrariae Brackel (on Cetraria is- landica) are described as new to science. Forty four species of lichenicolous fungi (Arthonia apotheciorum, A. aspicili- ae, A. epiphyscia, A. molendoi, A. pannariae, A. peltigerina, Cercidospora ochrolechiae, C. trypetheliza, C. verrucosar- ia, Dacampia engeliana, Dactylospora aeruginosa, D. frigida, Endococcus fusiger, E. sendtneri, Epibryon conductrix, Epilichen glauconigellus, Lichenochora coppinsii, L. weillii, Lichenopeltella peltigericola, L. santessonii, Lichenostigma chlaroterae, L. maureri, Llimoniella vinosa, Merismatium decolorans, M. heterophractum, Muellerella atricola, M. erratica, Pronectria erythrinella, Protothelenella croceae, Skyttella mulleri, Sphaerellothecium parmeliae, Sphaeropezia santessonii, S. thamnoliae, Stigmidium cladoniicola, S. collematis, S. frigidum, S. leucophlebiae, S. mycobilimbiae, S. pseudopeltideae, Taeniolella pertusariicola, Tremella cetrariicola, Xenonectriella lutescens, X. ornamentata,
    [Show full text]
  • Phylogenetic Diversity of the Lichenized Algal Genus Trebouxia (Trebouxiophyceae, Chlorophyta): a New Lineage and Novel Insights
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Botanical Journal of the Linnean Society, 2020, XX, 1–9. With 3 figures. Downloaded from https://academic.oup.com/botlinnean/article-abstract/doi/10.1093/botlinnean/boaa050/5873858 by National and University Library of Iceland user on 05 August 2020 Phylogenetic diversity of the lichenized algal genus Trebouxia (Trebouxiophyceae, Chlorophyta): a new lineage and novel insights from fungal-algal association Keywords=Keywords=Keywords_First=Keywords patterns of Icelandic cetrarioid lichens (Parmeliaceae, HeadA=HeadB=HeadA=HeadB/HeadA Ascomycota) HeadB=HeadC=HeadB=HeadC/HeadB HeadC=HeadD=HeadC=HeadD/HeadC MAONIAN XU1, , HUGO DE BOER2, ELIN SOFFIA OLAFSDOTTIR1, Extract3=HeadA=Extract1=HeadA SESSELJA OMARSDOTTIR1 and STARRI HEIDMARSSON3,*, REV_HeadA=REV_HeadB=REV_HeadA=REV_HeadB/HeadA REV_HeadB=REV_HeadC=REV_HeadB=REV_HeadC/HeadB 1Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, IS-107 Reykjavik, REV_HeadC=REV_HeadD=REV_HeadC=REV_HeadD/HeadC Iceland 2Natural History Museum, University of Oslo, Sars’ gate 1, NO-0562 Oslo, Norway REV_Extract3=REV_HeadA=REV_Extract1=REV_HeadA 3Icelandic Institute of Natural History, Akureyri Division, IS-600 Akureyri, Iceland BOR_HeadA=BOR_HeadB=BOR_HeadA=BOR_HeadB/HeadA BOR_HeadB=BOR_HeadC=BOR_HeadB=BOR_HeadC/HeadB Received 3 June 2019; revised 20 March 2020; accepted for publication 11 June 2020 BOR_HeadC=BOR_HeadD=BOR_HeadC=BOR_HeadD/HeadC BOR_Extract3=BOR_HeadA=BOR_Extract1=BOR_HeadA EDI_HeadA=EDI_HeadB=EDI_HeadA=EDI_HeadB/HeadA
    [Show full text]
  • The Phylogenetic Position of Normandina Simodensis (Verrucariaceae, Lichenized Ascomycota)
    Bull. Natl. Mus. Nat. Sci., Ser. B, 41(1), pp. 1–7, February 20, 2015 The Phylogenetic Position of Normandina simodensis (Verrucariaceae, Lichenized Ascomycota) Andreas Frisch1* and Yoshihito Ohmura2 1 Am Heiligenfeld 36, 36041 Fulda, Germany 2 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan * E-mail: [email protected] (Received 17 November 2014; accepted 24 December 2014) Abstract The phylogenetic position of Normandina simodensis is demonstrated by Bayesian and Maximum Likelihood analyses of concatenated mtSSU, nucSSU, nucLSU and RPB1 sequence data. Normandina simodensis is placed basal in a well-supported clade with N. pulchella and N. acroglypta, thus confirming Normandina as a monophyletic genus within Verrucariaceae. Norman- dina species agree in general ascoma morphology but differ in thallus structure and the mode of vegetative reproduction: crustose and sorediate in N. acroglypta; squamulose and sorediate in N. pulchella; and squamulose and esorediate in N. simodensis. Key words : Bayesian, growth form, Japan, maximum likelihood, pyrenocarpous lichens, taxonomy. Normandina Nyl. is a small genus comprising vex squamules with flat to downturned margins only three species at the world level (Aptroot, in N. simodensis. While the first two species usu- 1991; Muggia et al., 2010). Normandina pul- ally bear maculate soralia and are often found in chella (Borrer) Nyl. is almost cosmopolitan, sterile condition, N. simodensis lacks soralia and lacking only in Antarctica, while the other two is usually fertile. The latter species differs further species are of more limited distribution. Norman- by its thick paraplectenchymatic upper cortex dina acroglypta (Norman) Aptroot is known and a ± well-developed medulla derived from from Europe (Aptroot, 1991; Orange and Apt- the photobiont layer.
    [Show full text]
  • Seed Interior Microbiome of Rice Genotypes Indigenous to Three
    Raj et al. BMC Genomics (2019) 20:924 https://doi.org/10.1186/s12864-019-6334-5 RESEARCH ARTICLE Open Access Seed interior microbiome of rice genotypes indigenous to three agroecosystems of Indo-Burma biodiversity hotspot Garima Raj1*, Mohammad Shadab1, Sujata Deka1, Manashi Das1, Jilmil Baruah1, Rupjyoti Bharali2 and Narayan C. Talukdar1* Abstract Background: Seeds of plants are a confirmation of their next generation and come associated with a unique microbia community. Vertical transmission of this microbiota signifies the importance of these organisms for a healthy seedling and thus a healthier next generation for both symbionts. Seed endophytic bacterial community composition is guided by plant genotype and many environmental factors. In north-east India, within a narrow geographical region, several indigenous rice genotypes are cultivated across broad agroecosystems having standing water in fields ranging from 0-2 m during their peak growth stage. Here we tried to trap the effect of rice genotypes and agroecosystems where they are cultivated on the rice seed microbiota. We used culturable and metagenomics approaches to explore the seed endophytic bacterial diversity of seven rice genotypes (8 replicate hills) grown across three agroecosystems. Results: From seven growth media, 16 different species of culturable EB were isolated. A predictive metabolic pathway analysis of the EB showed the presence of many plant growth promoting traits such as siroheme synthesis, nitrate reduction, phosphate acquisition, etc. Vitamin B12 biosynthesis restricted to bacteria and archaea; pathways were also detected in the EB of two landraces. Analysis of 522,134 filtered metagenomic sequencing reads obtained from seed samples (n=56) gave 4061 OTUs.
    [Show full text]
  • Australasian Lichenology Number 56, January 2005
    Australasian Lichenology Number 56, January 2005 Australasian Lichenology Number 56, January 2005 ISSN 1328-4401 The Austral Pannaria immixta c.olonizes rock, bark, and occasionally bryophytes in both shaded and well-lit humid lowlands. Its two most distinctive traits are its squamulose thallus and its gyrose apothecial discs. 1 mm c:::::===-­ CONTENTS NEWS Kantvilas, ~ack Elix awarded the Acharius medal at IAL5 2 BOOK REVIEW Galloway, DJ-The Lichen Hunters, by Oliver Gilbert (2004) 4 RECENT LITERATURE ON AUSTRALASIAN LICHENS 7 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Elix, JA; Lumbsch, HT (55)-Diploschistes conception is 8 ARTICLES Archer, AW-Australian species in the genus Diorygma (Graphidaceae) ....... 10 Elix, JA; Blanco, 0; Crespo, A-A new species of Flauoparmelia (Parmeliaceae, lichenized Ascomycota) from Western Australia ...... .... ............................ ...... 12 Galloway, DJ; Sancho, LG-Umbilicaria murihikuana and U. robusta (Umbili­ cariaceae: Ascomycota), two new taxa from Aotearoa New Zealand .. ... .. ..... 16 Elix, JA; Bawingan, PA; Lardizaval, M; Schumm, F-Anew species ofMenegazzia (Parmeliaceae, lichenized Ascomycota) and new records of Parmeliaceae from Papua New Guinea and the Philippines .................................. .. .................... 20 Malcolm, WM-'ITansfer ofDimerella rubrifusca to Coenogonium ........ ......... 25 Johnson, PN- Lichen succession near Arthur's Pass, New Zealand ............... 26 NEWS JACK ELIXAWARDED THE ACHARIUS MEDALAT IAL5 The recent Fifth Conference of the International Association for Lichenology (1AL5) in Tartu, Estonia, was a highly successful event, and most Australasian lichenologists will have the opportunity to read of its various academic achieve­ ments in other media*. The social programme included the traditionallAL Din­ ner, where, after many days of symposia, poster sessions, excursions, meetings and other lichenological events, conference delegates mingle informally and dust away their weariness over food and drink.
    [Show full text]
  • Revision of the Verrucaria Elaeomelaena Species Complex and Morphologically Similar Freshwater Lichens (Verrucariaceae, Ascomycota)
    Phytotaxa 197 (3): 161–185 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.197.3.1 Revision of the Verrucaria elaeomelaena species complex and morphologically similar freshwater lichens (Verrucariaceae, Ascomycota) THÜS, H.1, ORANGE, A.2, GUEIDAN, C.1,3, PYKÄLÄ, J.4, RUBERti, C.5, Lo SCHIAVO, F.5 & NAscimBENE, J.5 1Life Sciences Department, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom. [email protected] 2Department of Biodiversity and Systematic Biology, National Museum Wales, Cathays Park, Cardiff CF10 3NP, United Kingdom. 3CSIRO, NRCA, Australian National Herbarium, GPO Box 1600, Canberra ACT 2601 Australia (current address) 4Finnish Environment Institute, Natural Environment Centre, P.O. Box 140, FI-00251 Helsinki, Finland. 5Department of Biology, University of Padua, via Ugo Bassi 58/b, 35121, Padova Abstract The freshwater lichens Verrucaria elaeomelaena, V. alpicola, and V. funckii (Verrucariaceae/Ascomycota) have long been confused with V. margacea and V. placida and conclusions on the substratum preference and distribution have been obscured due to misidentifications. Independent phylogenetic analyses of a multigene dataset (RPB1, mtSSU, nuLSU) and an ITS- dataset combined with morphological and ecological characters confirm that the Verrucaria elaeomelaena agg. consists of several cryptic taxa. It includes V. elaeomelaena s.str. with mostly grey to mid-brown thalli and transparent exciple base which cannot be distinguished morphologically from several other unnamed clades from low elevations, the semi-cryptic V. humida spec. nov., which is characterised by smaller perithecia, shorter and more elongated spores compared to other species in this group and V.
    [Show full text]
  • A Checklist of Lichens Collected During the First Howard Crum Bryological Workshop, Delaware Water Gap National Recreation Area
    Opuscula Philolichenum, 2: 1-10. 2005. Contributions to the Lichen Flora of Pennsylvania: A Checklist of Lichens Collected During the First Howard Crum Bryological Workshop, Delaware Water Gap National Recreation Area RICHARD C. HARRIS1 & JAMES C. LENDEMER2 ABSTRACT. – A checklist of 209 species of lichens and lichenicolous fungi collected during the First Howard Crum Bryological Workshop in the Delaware Water Gap National Recreation Area, Pennsylvania, USA is provided. The new species Opegrapha bicolor R.C. Harris & Lendemer, collected during the Foray, is described. Chrysothrix flavovirens Tønsberg and Merismatium peregrinum (Flotow) Triebel are reported as new to North America. On April 23-26, 2004, we were graciously allowed to be commensals during the First Howard Crum Bryological Workshop in the Delaware Water Gap National Recreation Area, Pennsylvania, USA. Given the dearth of knowledge of lichen distributions in Pennsylvania and the overall lack of recent vouchers, this was a valuable opportunity to collect in what turned out to be a rich and interesting area. We were quite surprised by the apparent high lichen diversity, as well as the number of novelties and rarities, in an area so close to the East Coast megalopolis. In four half-days in the field, we collected 209 species in a limited area of the Pennsylvania part of the Park. Some are clearly new to science of which, Opegrapha bicolor is described here (see Endnote). Two presumably undescribed species of Fellhanera will be published elsewhere, and the Halecania will be included in a forthcoming treatment of Ozark lichens. Others are left for the future, as present material (and our knowledge) are inadequate.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]