Bibliography of Magic Squares
Total Page:16
File Type:pdf, Size:1020Kb
Bibliography [1] Abe, Gakuho. Irregular perfect magic squares of order 7. In: Journal of Recreational Mathematics Vol. 15. Nr. 4 (1982). S. 249–250. [2] Abe, Gakuho. Unsolved problems on magic squares. In: Discrete Mathematics Vol. 127. Nr. 1-3 (1994). S. 3–13. [3] Abiyev, Asker Ali. The correlation of Abiyev’s balanced squares with periodic law. In: Proceedings of the 2nd international conference on Applied informatics and computing theory. World Scientific, Enginee- ring Academy und Society (WSEAS), 2011, S. 33–38. [4] Agrippa von Nettesheim, Heinrich Cornelius. De Occulta Philosophia Libri tres. 1533. [5] Ahmed, Maya Mohsin. Demystifying Benjamin Franklin’s other 8-square. arXiv: 1510.05509. Web- published document, URL: https://arxiv.org/abs/1510.05509 (2015, last access: 6.3.2020). [6] Ahmed, Maya Mohsin. How Many Squares Are There, Mr. Franklin?: Constructing and Enumerating Franklin Squares. In: The American Mathematical Monthly Vol. 111. Nr. 5 (2004). S. 394–410. [7] Ahmed, Maya Mohsin. Unraveling the secret of Benjamin Franklin: Constructing Franklin squares of higher order. arXiv: 1509.07756. Web-published document, URL: https://arxiv.org/abs/1509. 07756 (2015, last access: 6.3.2020). [8] Ahrens, Wilhelm. Das magische Quadrat auf Dürers Melancholie. In: Zeitschrift für bildende Kunst Vol. 50 (1915). S. 291–301. [9] Ahrens, Wilhelm. Mathematische Unterhaltungen und Spiele. 1. Auflage. Leipzig: B.G. Teubner, 1901. [10] Ahrens, Wilhelm. Mathematische Unterhaltungen und Spiele. 2. Auflage. Leipzig: B.G. Teubner, 1918. [11] Ahrens, Wilhelm. Studien über die magischen Quadrate der Araber. In: Der Islam Vol. 7 (1915).S. 186–250. [12] Amela, Miguel Angel. Structured 8 x 8 Franklin Squares. Web-published document, URL: http: //www.region.com.ar/amela/franklinsquares (2006, last access: 6.3.2020). - 1273 - [13] Anderegg, F. A Perfect Magic Square. In: The American Mathematical Monthly Vol. 12. Nr. 11 (1905). S. 195–196. [14] Anderson, Dawn L. Magic Squares: Discovering Their History and Their Magic. In: Mathematics Tea- ching in the Middle School Vol. 6. Nr. 8 (2001). S. 466–471. [15] Andress, W. R. Basic Properties of Pandiagonal Magic Squares. In: The American Mathematical Monthly Vol. 67. Nr. 2 (1960). S. 143–152. [16] Andress, W. R. Correction: Basic Properties of Pandiagonal Magic Squares. In: The American Mathema- tical Monthly Vol. 67. Nr. 7 (1960). S. 658. [17] Andrews, William Symes. Magic Squares and Cubes. 2. Edition. (unveränderter Nachdruck der Aus- gabe von 1917). Dover-Publications Inc., 1960. [18] Andrews, William Symes. Notes on Oddly-Even Magic Squares. In: The Monist Vol. 20 (1910).S. 126–130. (siehe Andrews [17], S. 225 ff.) [19] Andrews, William Symes. The Construction of Magic Square sand Rectangles by The Method of Com- plementary Differences. In: The Monist Vol. 20 (1910). S. 434–440. (siehe Andrews [17], S. 257 ff.) [20] Andrews, William Symes und Frierson, L.S. Notes On The Construction Of Magic Squares of Orders in which n is of the General Form 4p+2. In: The Monist Vol. 22. Nr. 2 (1912). S. 304–314. (siehe Andrews [17], S. 267 ff.) [21] Anema, Andrew S. Perfected Benjamin Franklin magic squares. In: The Mathematics Teacher Vol. 49. Nr. 1 (1956). S. 35–36. [22] Apostol, T. M. und Zuckerman, H. S. On magic squares constructed by the uniform step method. In: Proceedings of the AMS Vol. 2. Nr. 4 (1951). S. 557–565. [23] Arnauld, Antoine. Nouveaux Elémens de Geométrie. 1667. [24] Arnauld, Antoine. Nouveaux Elémens de Geométrie. 1711. [25] Arnoux,Gabriel. Arithmétique graphique: Les espaces arithmétiques hypermagiques. In: Histoire de l’Académie Royale des Sciences. Paris: Gauthier-Villars, 1894, S. 364–382. [26] Arnoux,Gabriel. Les espaces arithmétique a cotés premiers inégaux. In: Association Française pour l’Avancement des Sciences. Paris, 1905, S. 103–122. [27] Aubry, A. G. Tarry et les Carrés Magiques. In: Association Française pour l’Avancement des Sciences. Paris, 1925, S. 109–111. [28] B.S.G.D.G. Carrés magiques en pain d’épices (Problème 1844). In: Les Tablettes du Chercheur (1894). S. 268, 309. [29] Bachet de Méziriac, Claude-Gaspar. Problème XXI. In: Problèmes plaisans & délectables qui se font par les nombres. 2. Édition. 1624, S. 161–169. [30] Bachet de Méziriac, Claude-Gaspar. Problème XXI. In: Problèmes plaisans & délectables qui se font par les nombres. 5. Édition. (rev., simplifiée et augm. par A. Labosne). Gauthier-Villars, 1884, S. 88–114. [31] Bachet de Méziriac Claude-Gaspar (rev., simplifiée et augm. par A. Labosne). Problème XXI. In: Problèmes plaisans & délectables qui se font par les nombres. 3. Édition. 1874, S. 88–114. [32] Ball, Walter William Rouse. Even Magic Squares. In: The Messenger of Mathematics Vol. 23. Nr. 2 (1893). S. 65–69. [33] Ball, Walter William Rouse. Mathematical Recreations and Essays. 7. Edition. London: Macmillan und Co Limited, 1917, S. 137–169. [34] Ball, Walter William Rouse. Mathematical Recreations and Essays. 10. Edition. London: Macmillan und Co Limited, 1922, S. 137–161. [35] Ball, Walter William Rouse. Recréations Mathématical et Problèmes des Temps Anciens et Modernes. 10. Edition. Paris: Librairie Scientifique A. Hermann, 1908, S. 155–197. [36] Ball, Walter William Rouse (revised by H.S.M. Coxeter). Mathematical Recreations and Essays. 11. Edition. New York: Macmillan und Co Limited, 1947. - 1274 - [37] Barbette, Edouard. Carrés Magiques du 16me Ordre. Bd. X. Mémoires de la Société Royale des Sciences de Liège. Bruxelles: Hayez, 1914, S. 125–128. [38] Barbette, Edouard. Les carrés magiques du mième ordre. Liège: Aug. Pholien, 1912. [39] Barbette, Edouard. Sur les carrés panmagiques. Bd. 10. Mémoires de la Société Royale des Sciences de Liège. Bruxelles: Hayez, 1914, S. 93–123. [40] Barink, Willem. The construction of perfect panmagic squares of order 4k. Web-published document, URL: http://allergrootste.com/friends/wba/magic-squares.html (2007, last access: 6.3.2020). [41] Barnard, F. A. P. Theory of Magic Squares and Cubes. In: Memoirs of the National Academy of Sciences Vol. 4 (1888). S. 209–270. [42] Barnard, F.A.P. Theory of Magic Squares and of Magic Cubes. Memoirs of the National Academy of Sciences. Washington: National Academy of Sciences, 1888, S. 209–270. [43] Benson, William H. und Jacoby, Oswald. New Recreations with Magic Squares. New York: Dover- Publications Inc., 1976. [44] Berggren,J. L. History of Mathematics in the Islamic World: The Present State of the Art. In: Middle East Studies Association Bulletin Vol. 19. Nr. 1 (1985). S. 9–33. [45] Berlekamp, E. R., Conway, J. H. und Guy, R. K. Winning Ways for Your Mathematical Plays. Bd. 2. London: Academic Press, 1982. [46] Bier, Thomas und Kleinschmidt, Axel. Centrally symmetric and magic rectangles. In: Discrete Mathe- matics Vol. 176. Nr. 1-3 (1997). S. 29–42. [47] Bier, Thomas und Rogers, Douglas G. Balanced Magic Rectangles. In: European Journal of Combinato- rics Vol. 14. Nr. 4 (1993). S. 285–299. [48] Block, Seymour S. und Tavares, Santiago A. Before Sudoku: The World of Magic Squares. Oxford: Oxford University Press, 2009. [49] Borsten, L., Duff, M.J., Hughes, L.J. u.a. A magic square from Yang-Mills squared. arXiv: 1301.4176. Web-published document, URL: https://arxiv.org/abs/1301.4176 (2013, last access: 6.3.2020). [50] Bouteloup, Jacques. Carrés magiques, carrés latins et eulériens. Editions du Choix, 1991. [51] Boyer, Christian. Les ancêtres français du sudoku. In: Pour La Science Vol. 344, Juni (2006). S. 8–11. (Lösungen auf Seite 89). [52] Boyer, Christian. Les premiers carrés tétra et pentamagiques. In: Pour La Science Vol. 286, August (2001). S. 98–202. [53] Boyer, Christian. Magic squares. In: Mathematics Today Vol. 42. Nr. 2 (2006). S. 70. (letter). [54] Boyer, Christian. Multimagic squares site. Web-published document, URL: http://www.multimagie. com (2002, last access: 6.3.2020). [55] Boyer, Christian. Some notes on the magic squares of squares problem. In: The Mathematical Intelligencer Vol. 27. Nr. 2 (2005). S. 52–64. [56] Boyer, Christian. Sudoku’s French ancestors. In: The Mathematical Intelligencer Vol. 29. Nr. 1 (2007). S. 37–44. [57] Boyer, Christian. Sudoku’s French ancestors. In: The Mathematical Intelligencer Vol. 29. Nr. 2 (2007). S. 59–63. (Lösungen). [58] Breedijk,Arie. Basic Pattern Method. Web-published document, URL: https://www.magischvierkant. com/two-dimensional-eng/8x8/basic-pattern-method-1 (2002, last access: 6.3.2020). [59] Burnett, John Chaplyn. Easy methods for the construction of magic squares. London: Rider & Co., 1936. [60] Calder, I. R. F. A Note on Magic Squares in the Philosophy of Agrippa of Nettesheim. In: Journal of the Warburg and Courtauld Institutes Vol. 12 (1949). S. 196–199. [61] Cameron, Ian, Rogers, Adam und Loly, Peter D. Signatura of magic and Latin integer squares: isentro- pic clans and indexing. In: Discussiones Mathematicae Probality and Statistics Vol. 33 (2013). S. 121–149. - 1275 - [62] Cammann, Schuyler. Islamic and Indian Magic Squares (Part I). In: History of Religions Vol. 8. Nr. 3 (1969). S. 181–209. [63] Cammann, Schuyler. Islamic and Indian Magic Squares (Part II). In: History of Religions Vol. 8. Nr. 4 (1969). S. 271–299. [64] Cammann, Schuyler. The evolution of magic squares in China. In: Journal of the American Oriental Society Vol. 80. Nr. 2 (1960). S. 116–124. [65] Campbell, W. A. An Unusual 12 by 12 Magic Square. In: Mathematics in School Vol. 32. Nr. 5 (2003). S. 40. [66] Candy, Albert L. Construction, Classification and Census of Magic Squares of Even Order. In: The Ame- rican Mathematical Monthly Vol. 44. Nr. 8 (1937). S. 528. [67] Candy, Albert L. Construction, classification and census of magic squares of order five. Self-published, 1939. [68] Candy, Albert L. Pandiagonal magic squares of composite order. Self-published, 1941. [69] Candy, Albert L. Pandiagonal magic squares of prime order.