Bibliography of Magic Squares

Bibliography of Magic Squares

Bibliography [1] Abe, Gakuho. Irregular perfect magic squares of order 7. In: Journal of Recreational Mathematics Vol. 15. Nr. 4 (1982). S. 249–250. [2] Abe, Gakuho. Unsolved problems on magic squares. In: Discrete Mathematics Vol. 127. Nr. 1-3 (1994). S. 3–13. [3] Abiyev, Asker Ali. The correlation of Abiyev’s balanced squares with periodic law. In: Proceedings of the 2nd international conference on Applied informatics and computing theory. World Scientific, Enginee- ring Academy und Society (WSEAS), 2011, S. 33–38. [4] Agrippa von Nettesheim, Heinrich Cornelius. De Occulta Philosophia Libri tres. 1533. [5] Ahmed, Maya Mohsin. Demystifying Benjamin Franklin’s other 8-square. arXiv: 1510.05509. Web- published document, URL: https://arxiv.org/abs/1510.05509 (2015, last access: 6.3.2020). [6] Ahmed, Maya Mohsin. How Many Squares Are There, Mr. Franklin?: Constructing and Enumerating Franklin Squares. In: The American Mathematical Monthly Vol. 111. Nr. 5 (2004). S. 394–410. [7] Ahmed, Maya Mohsin. Unraveling the secret of Benjamin Franklin: Constructing Franklin squares of higher order. arXiv: 1509.07756. Web-published document, URL: https://arxiv.org/abs/1509. 07756 (2015, last access: 6.3.2020). [8] Ahrens, Wilhelm. Das magische Quadrat auf Dürers Melancholie. In: Zeitschrift für bildende Kunst Vol. 50 (1915). S. 291–301. [9] Ahrens, Wilhelm. Mathematische Unterhaltungen und Spiele. 1. Auflage. Leipzig: B.G. Teubner, 1901. [10] Ahrens, Wilhelm. Mathematische Unterhaltungen und Spiele. 2. Auflage. Leipzig: B.G. Teubner, 1918. [11] Ahrens, Wilhelm. Studien über die magischen Quadrate der Araber. In: Der Islam Vol. 7 (1915).S. 186–250. [12] Amela, Miguel Angel. Structured 8 x 8 Franklin Squares. Web-published document, URL: http: //www.region.com.ar/amela/franklinsquares (2006, last access: 6.3.2020). - 1273 - [13] Anderegg, F. A Perfect Magic Square. In: The American Mathematical Monthly Vol. 12. Nr. 11 (1905). S. 195–196. [14] Anderson, Dawn L. Magic Squares: Discovering Their History and Their Magic. In: Mathematics Tea- ching in the Middle School Vol. 6. Nr. 8 (2001). S. 466–471. [15] Andress, W. R. Basic Properties of Pandiagonal Magic Squares. In: The American Mathematical Monthly Vol. 67. Nr. 2 (1960). S. 143–152. [16] Andress, W. R. Correction: Basic Properties of Pandiagonal Magic Squares. In: The American Mathema- tical Monthly Vol. 67. Nr. 7 (1960). S. 658. [17] Andrews, William Symes. Magic Squares and Cubes. 2. Edition. (unveränderter Nachdruck der Aus- gabe von 1917). Dover-Publications Inc., 1960. [18] Andrews, William Symes. Notes on Oddly-Even Magic Squares. In: The Monist Vol. 20 (1910).S. 126–130. (siehe Andrews [17], S. 225 ff.) [19] Andrews, William Symes. The Construction of Magic Square sand Rectangles by The Method of Com- plementary Differences. In: The Monist Vol. 20 (1910). S. 434–440. (siehe Andrews [17], S. 257 ff.) [20] Andrews, William Symes und Frierson, L.S. Notes On The Construction Of Magic Squares of Orders in which n is of the General Form 4p+2. In: The Monist Vol. 22. Nr. 2 (1912). S. 304–314. (siehe Andrews [17], S. 267 ff.) [21] Anema, Andrew S. Perfected Benjamin Franklin magic squares. In: The Mathematics Teacher Vol. 49. Nr. 1 (1956). S. 35–36. [22] Apostol, T. M. und Zuckerman, H. S. On magic squares constructed by the uniform step method. In: Proceedings of the AMS Vol. 2. Nr. 4 (1951). S. 557–565. [23] Arnauld, Antoine. Nouveaux Elémens de Geométrie. 1667. [24] Arnauld, Antoine. Nouveaux Elémens de Geométrie. 1711. [25] Arnoux,Gabriel. Arithmétique graphique: Les espaces arithmétiques hypermagiques. In: Histoire de l’Académie Royale des Sciences. Paris: Gauthier-Villars, 1894, S. 364–382. [26] Arnoux,Gabriel. Les espaces arithmétique a cotés premiers inégaux. In: Association Française pour l’Avancement des Sciences. Paris, 1905, S. 103–122. [27] Aubry, A. G. Tarry et les Carrés Magiques. In: Association Française pour l’Avancement des Sciences. Paris, 1925, S. 109–111. [28] B.S.G.D.G. Carrés magiques en pain d’épices (Problème 1844). In: Les Tablettes du Chercheur (1894). S. 268, 309. [29] Bachet de Méziriac, Claude-Gaspar. Problème XXI. In: Problèmes plaisans & délectables qui se font par les nombres. 2. Édition. 1624, S. 161–169. [30] Bachet de Méziriac, Claude-Gaspar. Problème XXI. In: Problèmes plaisans & délectables qui se font par les nombres. 5. Édition. (rev., simplifiée et augm. par A. Labosne). Gauthier-Villars, 1884, S. 88–114. [31] Bachet de Méziriac Claude-Gaspar (rev., simplifiée et augm. par A. Labosne). Problème XXI. In: Problèmes plaisans & délectables qui se font par les nombres. 3. Édition. 1874, S. 88–114. [32] Ball, Walter William Rouse. Even Magic Squares. In: The Messenger of Mathematics Vol. 23. Nr. 2 (1893). S. 65–69. [33] Ball, Walter William Rouse. Mathematical Recreations and Essays. 7. Edition. London: Macmillan und Co Limited, 1917, S. 137–169. [34] Ball, Walter William Rouse. Mathematical Recreations and Essays. 10. Edition. London: Macmillan und Co Limited, 1922, S. 137–161. [35] Ball, Walter William Rouse. Recréations Mathématical et Problèmes des Temps Anciens et Modernes. 10. Edition. Paris: Librairie Scientifique A. Hermann, 1908, S. 155–197. [36] Ball, Walter William Rouse (revised by H.S.M. Coxeter). Mathematical Recreations and Essays. 11. Edition. New York: Macmillan und Co Limited, 1947. - 1274 - [37] Barbette, Edouard. Carrés Magiques du 16me Ordre. Bd. X. Mémoires de la Société Royale des Sciences de Liège. Bruxelles: Hayez, 1914, S. 125–128. [38] Barbette, Edouard. Les carrés magiques du mième ordre. Liège: Aug. Pholien, 1912. [39] Barbette, Edouard. Sur les carrés panmagiques. Bd. 10. Mémoires de la Société Royale des Sciences de Liège. Bruxelles: Hayez, 1914, S. 93–123. [40] Barink, Willem. The construction of perfect panmagic squares of order 4k. Web-published document, URL: http://allergrootste.com/friends/wba/magic-squares.html (2007, last access: 6.3.2020). [41] Barnard, F. A. P. Theory of Magic Squares and Cubes. In: Memoirs of the National Academy of Sciences Vol. 4 (1888). S. 209–270. [42] Barnard, F.A.P. Theory of Magic Squares and of Magic Cubes. Memoirs of the National Academy of Sciences. Washington: National Academy of Sciences, 1888, S. 209–270. [43] Benson, William H. und Jacoby, Oswald. New Recreations with Magic Squares. New York: Dover- Publications Inc., 1976. [44] Berggren,J. L. History of Mathematics in the Islamic World: The Present State of the Art. In: Middle East Studies Association Bulletin Vol. 19. Nr. 1 (1985). S. 9–33. [45] Berlekamp, E. R., Conway, J. H. und Guy, R. K. Winning Ways for Your Mathematical Plays. Bd. 2. London: Academic Press, 1982. [46] Bier, Thomas und Kleinschmidt, Axel. Centrally symmetric and magic rectangles. In: Discrete Mathe- matics Vol. 176. Nr. 1-3 (1997). S. 29–42. [47] Bier, Thomas und Rogers, Douglas G. Balanced Magic Rectangles. In: European Journal of Combinato- rics Vol. 14. Nr. 4 (1993). S. 285–299. [48] Block, Seymour S. und Tavares, Santiago A. Before Sudoku: The World of Magic Squares. Oxford: Oxford University Press, 2009. [49] Borsten, L., Duff, M.J., Hughes, L.J. u.a. A magic square from Yang-Mills squared. arXiv: 1301.4176. Web-published document, URL: https://arxiv.org/abs/1301.4176 (2013, last access: 6.3.2020). [50] Bouteloup, Jacques. Carrés magiques, carrés latins et eulériens. Editions du Choix, 1991. [51] Boyer, Christian. Les ancêtres français du sudoku. In: Pour La Science Vol. 344, Juni (2006). S. 8–11. (Lösungen auf Seite 89). [52] Boyer, Christian. Les premiers carrés tétra et pentamagiques. In: Pour La Science Vol. 286, August (2001). S. 98–202. [53] Boyer, Christian. Magic squares. In: Mathematics Today Vol. 42. Nr. 2 (2006). S. 70. (letter). [54] Boyer, Christian. Multimagic squares site. Web-published document, URL: http://www.multimagie. com (2002, last access: 6.3.2020). [55] Boyer, Christian. Some notes on the magic squares of squares problem. In: The Mathematical Intelligencer Vol. 27. Nr. 2 (2005). S. 52–64. [56] Boyer, Christian. Sudoku’s French ancestors. In: The Mathematical Intelligencer Vol. 29. Nr. 1 (2007). S. 37–44. [57] Boyer, Christian. Sudoku’s French ancestors. In: The Mathematical Intelligencer Vol. 29. Nr. 2 (2007). S. 59–63. (Lösungen). [58] Breedijk,Arie. Basic Pattern Method. Web-published document, URL: https://www.magischvierkant. com/two-dimensional-eng/8x8/basic-pattern-method-1 (2002, last access: 6.3.2020). [59] Burnett, John Chaplyn. Easy methods for the construction of magic squares. London: Rider & Co., 1936. [60] Calder, I. R. F. A Note on Magic Squares in the Philosophy of Agrippa of Nettesheim. In: Journal of the Warburg and Courtauld Institutes Vol. 12 (1949). S. 196–199. [61] Cameron, Ian, Rogers, Adam und Loly, Peter D. Signatura of magic and Latin integer squares: isentro- pic clans and indexing. In: Discussiones Mathematicae Probality and Statistics Vol. 33 (2013). S. 121–149. - 1275 - [62] Cammann, Schuyler. Islamic and Indian Magic Squares (Part I). In: History of Religions Vol. 8. Nr. 3 (1969). S. 181–209. [63] Cammann, Schuyler. Islamic and Indian Magic Squares (Part II). In: History of Religions Vol. 8. Nr. 4 (1969). S. 271–299. [64] Cammann, Schuyler. The evolution of magic squares in China. In: Journal of the American Oriental Society Vol. 80. Nr. 2 (1960). S. 116–124. [65] Campbell, W. A. An Unusual 12 by 12 Magic Square. In: Mathematics in School Vol. 32. Nr. 5 (2003). S. 40. [66] Candy, Albert L. Construction, Classification and Census of Magic Squares of Even Order. In: The Ame- rican Mathematical Monthly Vol. 44. Nr. 8 (1937). S. 528. [67] Candy, Albert L. Construction, classification and census of magic squares of order five. Self-published, 1939. [68] Candy, Albert L. Pandiagonal magic squares of composite order. Self-published, 1941. [69] Candy, Albert L. Pandiagonal magic squares of prime order.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    25 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us