Australia the Worlds Longest Dot-To-Dot Puzzle Free

Total Page:16

File Type:pdf, Size:1020Kb

Australia the Worlds Longest Dot-To-Dot Puzzle Free FREE AUSTRALIA THE WORLDS LONGEST DOT-TO-DOT PUZZLE PDF Abi Daker | 16 pages | 11 Aug 2016 | Octopus Publishing Group | 9781781573853 | English | Lewes, United Kingdom Eight queens puzzle - Wikipedia Chess composer Max Bezzel published the eight queens puzzle in Franz Nauck published the first Australia the Worlds Longest Dot-to-Dot Puzzle in Since then, many mathematiciansincluding Carl Friedrich Gausshave worked on both the eight queens puzzle and its generalized n -queens version. InS. Gunther proposed a method using determinants to find solutions. Glaisher refined Gunther's approach. InEdsger Dijkstra used this problem to illustrate the power of what he called structured programming. He published a highly detailed description of a depth-first backtracking algorithm. The problem of finding all solutions to the 8-queens problem can be quite computationally expensive, as there are 4,, i. It is possible to use shortcuts that reduce computational requirements or rules of thumb that avoids brute-force computational techniques. For example, by applying a simple rule that constrains each queen to a Australia the Worlds Longest Dot-to-Dot Puzzle column or rowthough still considered brute force, it is Australia the Worlds Longest Dot-to-Dot Puzzle to reduce the number of possibilities to 16, that is, 8 8 possible combinations. Generating permutations further reduces the possibilities to just 40, that is, 8! The eight queens puzzle has 92 distinct solutions. If solutions that differ only by the symmetry operations of rotation and reflection of the board are counted as one, the puzzle has 12 solutions. These are called fundamental solutions; Australia the Worlds Longest Dot-to-Dot Puzzle of each are shown below. Solution 10 has the additional property that no three queens are in a straight line. The examples above can be obtained with the following formulas. One approach [3] is. A few more examples follow. There is no known formula for the exact number of solutions, or even for its asymptotic behaviour. Finding all solutions to the eight queens puzzle is a good example of a simple but nontrivial problem. For this reason, it is often used as an example problem for various programming techniques, including nontraditional approaches such as constraint programminglogic programming or genetic algorithms. The induction bottoms out with the solution to the 'problem' of placing 0 queens on the chessboard, which is the empty chessboard. This very poor algorithm will, among other things, produce the same results over and over again in all the different permutations of the assignments of the eight queens, as well as repeating the same computations over and over again for the different sub-sets of each solution. It is possible to do much better than this. One algorithm solves the eight rooks puzzle by generating the permutations of the numbers 1 through 8 of which there are 8! Then it rejects those boards with diagonal attacking positions. The backtracking depth-first search program, a slight improvement on the permutation method, constructs Australia the Worlds Longest Dot-to-Dot Puzzle search tree by considering one row of the board at a time, eliminating most nonsolution board positions at a very early stage in their construction. Because it rejects rook and diagonal attacks even on incomplete boards, it examines only 15, possible queen placements. A further improvement, which examines only 5, possible queen placements, is to combine the permutation based method with the early pruning method: the permutations are generated depth-first, and the search space is pruned if the partial permutation produces a diagonal attack. Constraint programming can also be very effective on this problem. An alternative to exhaustive search is an 'iterative repair' algorithm, which typically starts with all queens on the board, for example with one queen per column. The ' minimum-conflicts ' heuristic — moving the piece with the largest number of conflicts to the square in the same column where the number of conflicts is smallest — is particularly effective: it finds a solution to the 1, queen problem in less than 50 steps on average. This assumes that the initial configuration is 'reasonably good' — if a million queens all start in the same row, it will take at leaststeps to fix it. A 'reasonably good' starting point can for instance be found by putting each queen in its own row and column so that it conflicts with the smallest number of queens already on the board. Unlike the backtracking search outlined above, iterative repair does not guarantee a solution: like all greedy procedures, it may get stuck on a local optimum. In such a case, the algorithm may be restarted with a different initial configuration. On the other hand, it can solve problem sizes that are several orders of magnitude beyond the scope of a depth-first search. This animation illustrates backtracking to solve the problem. A queen is placed in a column that is known not to cause conflict. If a column is not found the program returns to the last good state and then tries a different column. As an alternative to backtracking, solutions can be counted by recursively enumerating valid partial solutions, one row at a time. Rather than constructing entire board positions, blocked diagonals and columns are tracked with bitwise operations. This does not allow the recovery of individual solutions. The following is a Pascal program by Niklaus Wirth in From Wikipedia, the free encyclopedia. The only symmetrical solution to the eight queens puzzle up to rotation and reflection. Hoffman et al. Mathematics MagazineVol. XXpp. Barr and S. Retrieved 27 January Recreational Mathematics Australia the Worlds Longest Dot-to-Dot Puzzle. IV, G-C. Rota, ed. Archived from the original on 16 October Retrieved 20 September Rafraf, and M. Obtaining Australia the Worlds Longest Dot-to-Dot Puzzle solutions Australia the Worlds Longest Dot-to-Dot Puzzle magic squares and constructing magic squares from n-queens solutions. Journal of Artificial Intelligence Research. Retrieved 7 Australia the Worlds Longest Dot-to-Dot Puzzle Clay Mathematics Institute. Describes run time for up toQueens which was the max they could run due to memory constraints. University of Cambridge Computer Laboratory. Magic polygons. Alphamagic square Antimagic square Geomagic square Heterosquare Pandiagonal magic square Most-perfect magic square. Magic cube classes Magic hypercube Magic hyperbeam. Categories : Mathematical chess problems Chess problems Recreational mathematics Enumerative combinatorics in chess Mathematical problems. Hidden categories: Use dmy dates from January All articles lacking reliable references Articles lacking reliable references from March Articles with example Pascal code. Australia the Worlds Longest Dot-to-Dot Puzzle Article Talk. Views Read Edit View history. Help Learn to edit Community portal Recent changes Upload file. Download as PDF Printable version. The Wikibook Algorithm Implementation has a page on the topic of: N-queens problem. Books Kinokuniya: Dubai The World's Longest dot-to-dot Puzzle / Daker, Abi () Subscriber Account active since. Puzzles have never been more popular, with people turning to the brain teasers to keep them occupied while they're spending more time at home. Companies are upping their game to meet the new Australia the Worlds Longest Dot-to-Dot Puzzle, offering Australia the Worlds Longest Dot-to-Dot Puzzle puzzles that are entirely clear or made of micro pieces. Now, Heinz Ketchup is getting in on the fun with an entirely red version that will challenge even the most experienced puzzlers. All pieces of the puzzle are made to look like the color of ketchup, making the puzzle extremely challenging to complete. Heinz originally only made 57 of the puzzles in honor of its "57" logo that each bottle of the brand's ketchup is embossed with. You can get your own Ketchup Puzzle here. For more stories like this, sign up to get Life Insider Weekly directly into your inbox. Insider logo The word "Insider". Close icon Two crossed lines that form an 'X'. It indicates a way to close an interaction, or dismiss a notification. World globe An icon of the world globe, indicating different international options. A leading-edge research firm focused on digital transformation. Samantha Grindell. Snapchat icon A ghost. The World's Longest Dot-to-Dot Puzzle: London by Abi Daker, Hardcover | Barnes & Noble® Change the destination in the dropdown to update the prices displayed on the site. Dear customers, We are still despatching orders. UK delays should not be more than 48 hours, however this does vary depending on the issues Royal Mail are facing. Therefore we suggest allowing 14 working Australia the Worlds Longest Dot-to-Dot Puzzle for UK destinations before getting in touch with our team. The latest from Royal Mail re UK delivery can be found here. We sincerely appreciate your ongoing patience at this time as we strive to bring Australia the Worlds Longest Dot-to-Dot Puzzle to your doorstep during this unprecedented time. Please note further international delays should be expected. Please click here for further details. We would recommend allowing up to 6 weeks for International deliveries during this time. If you would like to receive every new cover of Ultimate Dot 2 Dot Magazine by email as it is released in the UK, please insert email below. We will not send you any other emails and you can stop them at any time. Current issues sent same day up to 3pm! Add a gift card by post or email and send the first issue after Christmas or immediately! A Australia the Worlds Longest Dot-to-Dot Puzzle that lasts all year, not just a few hours. Use the arrows to view and buy single issues of Ultimate Dot 2 Dot Magazine Magazine currently in stock, as well as pre-order future issues.
Recommended publications
  • Almost-Magic Stars a Magic Pentagram (5-Pointed Star), We Now Know, Must Have 5 Lines Summing to an Equal Value
    MAGIC SQUARE LEXICON: ILLUSTRATED 192 224 97 1 33 65 256 160 96 64 129 225 193 161 32 128 2 98 223 191 8 104 217 185 190 222 99 3 159 255 66 34 153 249 72 40 35 67 254 158 226 130 63 95 232 136 57 89 94 62 131 227 127 31 162 194 121 25 168 200 195 163 30 126 4 100 221 189 9 105 216 184 10 106 215 183 11 107 214 182 188 220 101 5 157 253 68 36 152 248 73 41 151 247 74 42 150 246 75 43 37 69 252 156 228 132 61 93 233 137 56 88 234 138 55 87 235 139 54 86 92 60 133 229 125 29 164 196 120 24 169 201 119 23 170 202 118 22 171 203 197 165 28 124 6 102 219 187 12 108 213 181 13 109 212 180 14 110 211 179 15 111 210 178 16 112 209 177 186 218 103 7 155 251 70 38 149 245 76 44 148 244 77 45 147 243 78 46 146 242 79 47 145 241 80 48 39 71 250 154 230 134 59 91 236 140 53 85 237 141 52 84 238 142 51 83 239 143 50 82 240 144 49 81 90 58 135 231 123 27 166 198 117 21 172 204 116 20 173 205 115 19 174 206 114 18 175 207 113 17 176 208 199 167 26 122 All rows, columns, and 14 main diagonals sum correctly in proportion to length M AGIC SQUAR E LEX ICON : Illustrated 1 1 4 8 512 4 18 11 20 12 1024 16 1 1 24 21 1 9 10 2 128 256 32 2048 7 3 13 23 19 1 1 4096 64 1 64 4096 16 17 25 5 2 14 28 81 1 1 1 14 6 15 8 22 2 32 52 69 2048 256 128 2 57 26 40 36 77 10 1 1 1 65 7 51 16 1024 22 39 62 512 8 473 18 32 6 47 70 44 58 21 48 71 4 59 45 19 74 67 16 3 33 53 1 27 41 55 8 29 49 79 66 15 10 15 37 63 23 27 78 11 34 9 2 61 24 38 14 23 25 12 35 76 8 26 20 50 64 9 22 12 3 13 43 60 31 75 17 7 21 72 5 46 11 16 5 4 42 56 25 24 17 80 13 30 20 18 1 54 68 6 19 H.
    [Show full text]
  • Magic’ September 17, 2018 Version 1.5-9 Date 2018-09-14 Title Create and Investigate Magic Squares Author Robin K
    Package ‘magic’ September 17, 2018 Version 1.5-9 Date 2018-09-14 Title Create and Investigate Magic Squares Author Robin K. S. Hankin Depends R (>= 2.10), abind Description A collection of efficient, vectorized algorithms for the creation and investigation of magic squares and hypercubes, including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The package includes methods for creating normal magic squares of any order greater than 2. The ultimate intention is for the package to be a computerized embodiment all magic square knowledge, including direct numerical verification of properties of magic squares (such as recent results on the determinant of odd-ordered semimagic squares). Some antimagic functionality is included. The package also serves as a rebuttal to the often-heard comment ``I thought R was just for statistics''. Maintainer ``Robin K. S. Hankin'' <[email protected]> License GPL-2 URL https://github.com/RobinHankin/magic.git NeedsCompilation no Repository CRAN Date/Publication 2018-09-17 09:00:08 UTC R topics documented: magic-package . .3 adiag . .3 allsubhypercubes . .5 allsums . .6 apad.............................................8 apl..............................................9 1 2 R topics documented: aplus . 10 arev ............................................. 11 arot ............................................. 12 arow............................................. 13 as.standard . 14 cilleruelo . 16 circulant . 17 cube2 . 18 diag.off . 19 do.index . 20 eq .............................................. 21 fnsd ............................................. 22 force.integer . 23 Frankenstein . 24 hadamard . 24 hendricks . 25 hudson . 25 is.magic . 26 is.magichypercube . 29 is.ok . 32 is.square.palindromic . 33 latin . 34 lozenge . 36 magic . 37 magic.2np1 . 38 magic.4n . 39 magic.4np2 . 40 magic.8 . 41 magic.constant .
    [Show full text]
  • THE ZEN of MAGIC SQUARES, CIRCLES, and STARS Also by Clifford A
    THE ZEN OF MAGIC SQUARES, CIRCLES, AND STARS Also by Clifford A. Pickover The Alien IQ Test Black Holes: A Traveler’s Guide Chaos and Fractals Chaos in Wonderland Computers and the Imagination Computers, Pattern, Chaos, and Beauty Cryptorunes Dreaming the Future Fractal Horizons: The Future Use of Fractals Frontiers of Scientific Visualization (with Stuart Tewksbury) Future Health: Computers and Medicine in the 21st Century The Girl Who Gave Birth t o Rabbits Keys t o Infinity The Loom of God Mazes for the Mind: Computers and the Unexpected The Paradox of God and the Science of Omniscience The Pattern Book: Fractals, Art, and Nature The Science of Aliens Spider Legs (with Piers Anthony) Spiral Symmetry (with Istvan Hargittai) The Stars of Heaven Strange Brains and Genius Surfing Through Hyperspace Time: A Traveler’s Guide Visions of the Future Visualizing Biological Information Wonders of Numbers THE ZEN OF MAGIC SQUARES, CIRCLES, AND STARS An Exhibition of Surprising Structures across Dimensions Clifford A. Pickover Princeton University Press Princeton and Oxford Copyright © 2002 by Clifford A. Pickover Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Library of Congress Cataloging-in-Publication Data Pickover, Clifford A. The zen of magic squares, circles, and stars : an exhibition of surprising structures across dimensions / Clifford A. Pickover. p. cm Includes bibliographical references and index. ISBN 0-691-07041-5 (acid-free paper) 1. Magic squares. 2. Mathematical recreations. I. Title. QA165.P53 2002 511'.64—dc21 2001027848 British Library Cataloging-in-Publication Data is available This book has been composed in Baskerville BE and Gill Sans.
    [Show full text]
  • Mathematics in Mind
    Mathematics in Mind Series Editor Marcel Danesi, University of Toronto, Canada Editorial Board Louis Kauffman, University of Illinois at Chicago, USA Dragana Martinovic, University of Windsor, Canada Yair Neuman, Ben-Gurion University of the Negev, Israel Rafael Núñez, University of California, San Diego, USA Anna Sfard, University of Haifa, Israel David Tall, University of Warwick, United Kingdom Kumiko Tanaka-Ishii, Kyushu University, Japan Shlomo Vinner, Hebrew University, Israel The monographs and occasional textbooks published in this series tap directly into the kinds of themes, research findings, and general professional activities of the Fields Cognitive Science Network, which brings together mathematicians, philosophers, and cognitive scientists to explore the question of the nature of mathematics and how it is learned from various interdisciplinary angles. The series will cover the following complementary themes and conceptualizations: Connections between mathematical modeling and artificial intelligence research; math cognition and symbolism, annotation, and other semiotic processes; and mathematical discovery and cultural processes, including technological systems that guide the thrust of cognitive and social evolution Mathematics, cognition, and computer science, focusing on the nature of logic and rules in artificial and mental systems The historical context of any topic that involves how mathematical thinking emerged, focusing on archeological and philological evidence Other thematic areas that have implications for the study
    [Show full text]
  • Franklin Squares ' a Chapter in the Scientific Studies of Magical Squares
    Franklin Squares - a Chapter in the Scienti…c Studies of Magical Squares Peter Loly Department of Physics, The University of Manitoba, Winnipeg, Manitoba Canada R3T 2N2 ([email protected]) July 6, 2006 Abstract Several aspects of magic(al) square studies fall within the computa- tional universe. Experimental computation has revealed patterns, some of which have lead to analytic insights, theorems or combinatorial results. Other numerical experiments have provided statistical results for some very di¢ cult problems. Schindel, Rempel and Loly have recently enumerated the 8th order Franklin squares. While classical nth order magic squares with the en- tries 1::n2 must have the magic sum for each row, column and the main diagonals, there are some interesting relatives for which these restrictions are increased or relaxed. These include serial squares of all orders with sequential …lling of rows which are always pandiagonal (having all parallel diagonals to the main ones on tiling with the same magic sum, also called broken diagonals), pandiagonal logic squares of orders 2n derived from Karnaugh maps, with an application to Chinese patterns, and Franklin squares of orders 8n which are not required to have any diagonal prop- erties, but have equal half row and column sums and 2-by-2 quartets, as well as stes of parallel magical bent diagonals. We modi…ed Walter Trump’s backtracking strategy for other magic square enumerations from GB32 to C++ to perform the Franklin count [a data…le of the 1; 105; 920 distinct squares is available], and also have a simpli…ed demonstration of counting the 880 fourth order magic squares using Mathematica [a draft Notebook].
    [Show full text]
  • Package 'Magic'
    Package ‘magic’ February 15, 2013 Version 1.5-4 Date 3 July 2012 Title create and investigate magic squares Author Robin K. S. Hankin Depends R (>= 2.4.0), abind Description a collection of efficient, vectorized algorithms for the creation and investiga- tion of magic squares and hypercubes,including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The package includes methods for creating normal magic squares of any order greater than 2. The ultimate intention is for the package to be a computerized embodi- ment all magic square knowledge,including direct numerical verification of properties of magic squares (such as recent results on the determinant of odd-ordered semimagic squares). Some antimagic functionality is included. The package also serves as a rebuttal to the often-heard comment ‘‘I thought R was just for statistics’’. Maintainer Robin K. S. Hankin <[email protected]> License GPL-2 Repository CRAN Date/Publication 2013-01-21 12:31:10 NeedsCompilation no R topics documented: magic-package . .3 adiag . .3 allsubhypercubes . .5 allsums . .6 apad.............................................8 apl..............................................9 1 2 R topics documented: aplus . 10 arev ............................................. 11 arot ............................................. 12 arow............................................. 13 as.standard . 14 cilleruelo . 16 circulant . 17 cube2 . 18 diag.off . 19 do.index . 20 eq .............................................. 21 fnsd ............................................. 22 force.integer . 23 Frankenstein . 24 hadamard . 24 hendricks . 25 hudson . 25 is.magic . 26 is.magichypercube . 29 is.ok . 32 is.square.palindromic . 33 latin . 34 lozenge . 36 magic . 37 magic.2np1 . 38 magic.4n . 39 magic.4np2 . 40 magic.8 . 41 magic.constant . 41 magic.prime . 42 magic.product .
    [Show full text]
  • Kruse-Recursion
    Chapter 5 RECURSION 1. Introduction to Recursion (a) Stack Frames (b) Recursion Trees (c) Examples 2. Principles of Recursion 3. Backtracking: Postponing the Work (a) The Eight-Queens Puzzle (b) Review and Refinement (c) Analysis 4. Tree-Structured Programs: Look-Ahead in Games Outline Data Structures and Program Design In C++ Transp. 1, Chapter 5, Recursion 80 1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458 Stacks and Trees D D Stack B C CC DDD space for A AAAAAA DDDDD data M MMMMMMMMMMMMMM Time M Start Finish A D B C D D D THEOREM 3.1 During the traversal of any tree, vertices are added to or deleted from the path back to the root in the fashion of a stack. Given any stack, conversely, a tree can be drawn to portray the life history of the stack, as items are pushed onto or popped from it. Stacks and Trees Data Structures and Program Design In C++ Transp. 2, Sect. 5.1, Introduction to Recursion 81 1999 Prentice-Hall, Inc., Upper Saddle River, N.J. 07458 Tree-Diagram Definitions The circles in a tree diagram are called vertices or nodes. The top of the tree is called its root. The vertices immediately below a given vertex are called the children of that vertex. The (unique) vertex immediately above a given vertex is called its parent. (The root is the only vertex in the tree that has no parent.) The line connecting a vertex with one immediately above or below is called a branch. Siblings are vertices with the same parent.
    [Show full text]
  • 8 Queens Puzzle
    8 Queens Puzzle Anna Clancy December 18, 2014 1 The puzzle The puzzle was first published by chess player Max Bezzel in 1848 and the first solution was completed in 1850 by Franz Nuack. [5] To complete the puzzle you have to place 8 queens on an 8 × 8 chessboard so that none of them can attack any of the others in only one move; so that none of them occupy the same row, column or diagonal line as in Figure 1. I intend to find a solution to this puzzle using sage. To represent the squares on the chess board, I have used (x, y) coordinates. Figure 1: An existing queen (blue) and the possible positions for a new queen (green) 2 Conditions on placing new queens For a new queen to be placed on the board: • It must have a different x coordinate to all the existing queens • It must have a different y coordinate to all the existing queens • The difference of the x coordinates of the new queen and every existing one can't equal the difference of their y coordinates The following code creates a function that returns True if it is possible to place a queen in any given square: def possible(x, y): for [a, b] in solution: if y == b: return False if abs(x - a) == abs(y - b): return False return True This piece of code is a slightly altered version of a piece of code from http://www.prasannatech.net/2012/07/eight-queens-python.html [3] 1 3 Finding a solution A solution can be obtained using the following piece of code and the function above: solution = [] tried = [] def solve(x, y=1): if x < 9 and y < 9: if possible(x, y) and [x, y] not in tried: solution.append([x,
    [Show full text]
  • N-Queens — 342 References
    n-Queens | 342 references This paper currently (November 20, 2018) contains 342 references (originally in BIB- TEX format) to articles dealing with or at least touching upon the well-known n-Queens problem. For many papers an abstract written by the authors (143×), a short note (51×), a doi (134×) or a url (76×) is added. How it all began The literature is not totally clear about the exact article in which the n-Queens prob- lem is first stated, but the majority of the votes seems to go to the 1848 Bezzel article \Proposal of the Eight Queens Problem" (title translated from German) in the Berliner Schachzeitung [Bez1848]. From this article on there have been many papers from many countries dealing with this nice and elegant problem. Starting with examining the original 8 × 8 chessboard, the problem was quickly generalized to the n-Queens Problem. Interesting fields of study are: Permutations, Magic Squares, Genetic Algorithms, Neural Networks, Theory of Graphs and of course \doing bigger boards faster". And even today there are still people submitting interesting n-Queens articles: the most recent papers are from 2018. Just added: [Gri2018, JDD+2018, Lur2017]. One Article To Hold Them All The paper \A Survey of Known Results and Research Areas for n-Queens" [BS2009] is a beautiful, rather complete survey of the problem. We thank the authors for the many references they have included in their article. We used them to make, as we hope, this n-Queens reference bibliography even more interesting. Searchable Online Database Using the JabRef software (http://www.jabref.org/), we publish a searchable online version of the bib-file.
    [Show full text]
  • Functions in C++
    2/21/2017 Functions in C++ Declarations vs Definitions Functions Inline Functions Class Member functions Overloaded Functions For : COP 3330. Pointers to functions Object oriented Programming (Using C++) http://www.compgeom.com/~piyush/teach/3330 Recursive functions Piyush Kumar Gcd Example 1071,1029 What you should know? 1029, 42 Calling a function? 42, 21 21, 0 #include <iostream> using std::cout; Defining a function Non-reference parameter. using std::endl; using std::cin; // return the greatest common divisor int gcd(int v1, int v2) int main() { { while (v2) { // get values from standard input int temp = v2; cout << "Enter two values: \n"; Function body Another scope. v2 = v1 % v2; int i, j; is a scope temp is a local variable v1 = temp; cin >> i >> j; } return v1; // call gcd on arguments i and j } // and print their greatest common divisor cout << "gcd: " << gcd(i, j) << endl; function gcd(a, b) return 0; if b = 0 return a } else return gcd(b, a mod b) Function return types Parameter Type-Checking // missing return type gcd(“hello”, “world”); Test(double v1, double v2){ /* … */ } gcd(24312); gcd(42,10,0); int *foo_bar(void){ /* … */ } gcd(3.14, 6.29); // ok? void process ( void ) { /* … */ } // Statically typed int manip(int v1, v2) { /* … */ } // language error int manip(int v1, int v2) { /* … */ } // ok 1 2/21/2017 Pointer Parameters Const parameters #include <iostream> #include <vector> using std::vector; Fcn(const int i) {}… using std::endl; using std::cout; Fcn can read but not write to i. void reset(int *ip) { *ip
    [Show full text]
  • Magic Square - Wikipedia, the Free Encyclopedia
    Magic square - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Magic_square You can support Wikipedia by making a tax-deductible donation. Magic square From Wikipedia, the free encyclopedia In recreational mathematics, a magic square of order n is an arrangement of n² numbers, usually distinct integers, in a square, such that the n numbers in all rows, all columns, and both diagonals sum to the same constant.[1] A normal magic square contains the integers from 1 to n². The term "magic square" is also sometimes used to refer to any of various types of word square. Normal magic squares exist for all orders n ≥ 1 except n = 2, although the case n = 1 is trivial—it consists of a single cell containing the number 1. The smallest nontrivial case, shown below, is of order 3. The constant sum in every row, column and diagonal is called the magic constant or magic sum, M. The magic constant of a normal magic square depends only on n and has the value For normal magic squares of order n = 3, 4, 5, …, the magic constants are: 15, 34, 65, 111, 175, 260, … (sequence A006003 in OEIS). Contents 1 History of magic squares 1.1 The Lo Shu square (3×3 magic square) 1.2 Cultural significance of magic squares 1.3 Arabia 1.4 India 1.5 Europe 1.6 Albrecht Dürer's magic square 1.7 The Sagrada Família magic square 2 Types of magic squares and their construction 2.1 A method for constructing a magic square of odd order 2.2 A method of constructing a magic square of doubly even order 2.3 The medjig-method of constructing magic squares of even number
    [Show full text]
  • Eight Queens Puzzle  the Interface  Algorithm  Solution Display  Extensions of Eight Queens Problem  Conclusion  Reference the Eight Queens Puzzle
    Review of eight queens puzzle The interface Algorithm Solution display Extensions of eight queens problem Conclusion Reference The eight queens puzzle Is the problem of putting eight chess queens on an 8×8 chessboard such that none of them is able to capture any other using the standard chess queen's moves. The queens must be placed in such a way that no two queens would be able to attack each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general n queens puzzle of placing n queens on an n×n chessboard, where solutions exist only for n = 1 and n ≥ 4. Java Java methods: main routine and subroutine Find help online about java programming Try to interpret existed java codes about eight queens puzzle Make my own program An interface: a chess board with panels and buttons, which handles the mouse clicks, shows instantaneous result. An algorithm “brain” that calculates each movement and solution. Some supportive parts like counting queens numbers, drawing cells, checking occupation and so on. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 10 1 1 2 1 1 1 01 0 1 1 1 0 0 0 1 0 1 0 1 0 10 0 0 1 0 0 1 0 0 0 1 0 0 0 01 0 0 1 0 0 0 0 Solutions for N queens: N 1 2 3 4 5 6 7 8 9 10 … U 1 0 0 1 2 1 6 12 46 92 … D 1 0 0 2 10 4 40 92 352 724 … For eight queens, if each row is occupied by one queen only, there are 16,777,216 (8*8) possible combinations.
    [Show full text]