Almost-Magic Stars a Magic Pentagram (5-Pointed Star), We Now Know, Must Have 5 Lines Summing to an Equal Value

Total Page:16

File Type:pdf, Size:1020Kb

Almost-Magic Stars a Magic Pentagram (5-Pointed Star), We Now Know, Must Have 5 Lines Summing to an Equal Value MAGIC SQUARE LEXICON: ILLUSTRATED 192 224 97 1 33 65 256 160 96 64 129 225 193 161 32 128 2 98 223 191 8 104 217 185 190 222 99 3 159 255 66 34 153 249 72 40 35 67 254 158 226 130 63 95 232 136 57 89 94 62 131 227 127 31 162 194 121 25 168 200 195 163 30 126 4 100 221 189 9 105 216 184 10 106 215 183 11 107 214 182 188 220 101 5 157 253 68 36 152 248 73 41 151 247 74 42 150 246 75 43 37 69 252 156 228 132 61 93 233 137 56 88 234 138 55 87 235 139 54 86 92 60 133 229 125 29 164 196 120 24 169 201 119 23 170 202 118 22 171 203 197 165 28 124 6 102 219 187 12 108 213 181 13 109 212 180 14 110 211 179 15 111 210 178 16 112 209 177 186 218 103 7 155 251 70 38 149 245 76 44 148 244 77 45 147 243 78 46 146 242 79 47 145 241 80 48 39 71 250 154 230 134 59 91 236 140 53 85 237 141 52 84 238 142 51 83 239 143 50 82 240 144 49 81 90 58 135 231 123 27 166 198 117 21 172 204 116 20 173 205 115 19 174 206 114 18 175 207 113 17 176 208 199 167 26 122 All rows, columns, and 14 main diagonals sum correctly in proportion to length M AGIC SQUAR E LEX ICON : Illustrated 1 1 4 8 512 4 18 11 20 12 1024 16 1 1 24 21 1 9 10 2 128 256 32 2048 7 3 13 23 19 1 1 4096 64 1 64 4096 16 17 25 5 2 14 28 81 1 1 1 14 6 15 8 22 2 32 52 69 2048 256 128 2 57 26 40 36 77 10 1 1 1 65 7 51 16 1024 22 39 62 512 8 473 18 32 6 47 70 44 58 21 48 71 4 59 45 19 74 67 16 3 33 53 1 27 41 55 8 29 49 79 66 15 10 15 37 63 23 27 78 11 34 9 2 61 24 38 14 23 25 12 35 76 8 26 20 50 64 9 22 12 3 13 43 60 31 75 17 7 21 72 5 46 11 16 5 4 42 56 25 24 17 80 13 30 20 18 1 54 68 6 19 H. D. Heinz & J. R. Hendricks Magic Square Lexicon: Illustrated By Harvey D. Heinz & John R. Hendricks Published November 2000 By HDH Copyright © 2000 by Harvey D. Heinz Published in small quantities by HDH as demand indicates ISBN 0-9687985-0-0 Binding courtesy of Pacific Bindery Services Ltd. For Erna & Celia Two ladies with patience and forbearance, while their men are ‘playing with numbers’. To commemorate the year 2000 Prime magic square A 67 241 577 571 547 769 127 13 223 139 421 673 619 307 331 199 Plus prime magic square B 1933 1759 1423 1429 1453 1231 1873 1987 1777 1861 1579 1327 1381 1693 1669 1801 Equals magic square C 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 Designed by John E. Everett (July, 2000) By permission, Carlos Rivera, http://www.primepuzzles.net/ Contents Tables and Illustrations.........................................................................iii Preface 1 ............................................................................................... xi Preface 2 .............................................................................................xiii Magic Square Lexicon................................................................ 1 to 174 References ......................................................................................... 175 The Authors ....................................................................................... 181 Magic Square Bibliography..............................................A1-1 to A1-15 John Hendricks Bibliography .............................................A2-1 to A2-3 13 22 10 1 23 9 4 17 14 7 12 20 12b 24 3 2 16 21 11 6 15 8 5 18 19 Tables and Illustrations 1 - Two types of almost magic stars ...................................................... 2 2 - The Alphamagic square of order-3................................................... 3 3 - An order-4 and an order-5 anti-magic square................................... 4 4 - Number of anti-magic squares.......................................................... 4 5 - Two order-5 anti-magic stars............................................................ 5 6 - The 8 aspects of a magic square. ...................................................... 6 7 - One of four order-3 magic cubes, all associated. ............................. 7 8 - Three associated magic squares........................................................ 8 9 - An order-9 associated, pandiagonal, 32 –ply magic square .............. 9 10 - One of 4 basic magic cubes. ......................................................... 11 11 - An order-4 Basic magic square. ..............………………………. 12 12 - A basic order-6 magic star. .......................................................... 13 13 - Basic tesseract MT# 9 shown in the standard position........ …… 14 14 - A disguised version of MT# 9 (previous figure). ......................... 15 15 - The 58 basic tesseracts of order-3 in indexed order ........... …… 16 16 - An order-8 bent-diagonal magic square. ............... …………….. 17 17 - An order-9 bimagic square with unusual features. .............. …… 19 18 - An order-5 and an order-6 bordered square......................... …… 21 19 -The continuous nature of a pandiagonal magic square. ....... …… 21 20 -Two order-3 magic squares and their complements. ............ …… 23 21 - An order-6 magic square and its complement. ..... …………….. 24 22 - An order-5 pandiagonal and its complement. pair pattern............ 24 23 - An order-4 complete cube of binary digits. .......... ………….….. 25 24 - 12 order-3 magic squares form an order-12 composition. .......... 27 25 - Two order-4 magic squares formed from the above........... ……. 27 iii Tables and Illustrations 26 - 2 order-5 magic square that don’t obey the rule for Bordered..... 28 27 - A hypercube of order-3 (a cube) showing the coordinates. .......... 30 28 - Crosmagic Quadrant pattern for order-9 and order-13. ...... ……. 32 29 - Diamagic Quadrant pattern for order-9 and order-13................... 34 30 - Diametrically equidistant pairs in even and odd orders................ 35 31 - A magic square in ternary, decimal 0-8 and decimal 1 to 9.......... 36 32 - Digital-root magic squares with digital roots of 3, 6 and 9. ......... 36 33 - Divide magic square from a multiply magic square. .................... 37 34 - An order-4 domino magic square. ................................................ 37 35 - An order-7 magic square using a complete set of dominoes. ....... 38 36 - Six doubly-even magic squares in one. ....................................... 39 37 - The 12 Dudeney groups. .............................................................. 40 38 - An order-7 magic square with embedded orders 3 and 4. ........... 41 39 - Table – Summary of magic squares count.................................... 42 40 - Table – Summary of magic stars count. ....................................... 43 41 - Index # 6 of the 36 essentially different pandiagonals. ................ 44 42 - An order-4, doubly-even, within a singly-even order-6. .............. 45 43 - An order-3 magic square with 2 expansion bands........................ 46 44 - Franklin’s order-8 magic square................................................... 49 45 - Some Franklin order-8 patterns. ................................................... 50 46 - Two magic Generalized parts....................................................... 52 47 - Exponential geometric magic square. .......................................... 53 48 - Ratio geometric magic square. .................................................... 53 49 - Order-4 Latin, Greek and Graeco-Latin squares. ......................... 54 50 - A bipartite anti-magic graph......................................................... 54 iv Tables and Illustrations 51 - A bipartite super-magic graph. ..................................................... 55 52 - An order-4 supermagic graph and magic square .......................... 55 53 - An order-5 star and two isomorphic tree-planting graphs. ........... 56 54 - Orders 3 and 4 Heterosquare. ....................................................... 57 55 - Horizontal and vertical steps in an order-3 magic square............. 58 56 - This non-normal order-4 magic square does not use integers. ..... 59 57 - The first 3 order-4 magic squares. ................................................ 60 58 - Star A shows the name of the cells, Star B is solution # 1. .......... 60 59 - The first six order-6 magic stars in tabular form. ......................... 61 60 - An order-5 with inlaid diamond and even corner numbers. ......... 62 61 - Comparison of order-4 Inlaid and Bordered magic squares. ........ 62 62 - The primary intermediate square for order-5................................ 63 63 - Pandiagonal order-5 and solution set............................................ 64 64 - An order-9 iso-like magic star...................................................... 66 65 - The order-9 diamagic square for the above star. .......................... 67 66 - An order-8 magic star isomorphic to an order-5 square. .............. 68 67 - Four aspects of the IXOHOXI magic square................................ 69 68 - An order-8 with two half-board re-entrant Knight Tours. ............ 71 69 - The two re-entrant knight tour paths for the above square. .......... 72 70 - Variations of a numerical Latin square......................................... 73 71 - Bergholt’s general form for order-4. ............................................ 74 72 - A solution set and the resulting magic square. ............................. 75 73 - An order-7 Lozenge magic square. .............................................. 76 74 - Lringmagic Quadrant pattern for order-9 and order-13................ 76 75 - An order-6 multiply magic square is 22 – ply and 32 – ply........... 77 v Tables and Illustrations 76 - Two magic circles......................................................................... 78 77 - An order-3
Recommended publications
  • Combinatorics: the Fine Art of Counting
    Combinatorics: The Fine Art of Counting Week Three Solutions Note: in these notes multiplication is assumed to take precedence over division, so 4!/2!2! = 4!/(2!*2!), and binomial coefficients are written horizontally: (4 2) denotes “4 choose 2” or 4!/2!2! Appetizers 1. How many 5 letter words have at least one double letter, i.e. two consecutive letters that are the same? 265 – 26*254 = 1,725,126 2. A Venn diagram is drawn using three circular regions of radius 1 with their centers all distance 1 from each other. What is the area of the intersection of all three regions? What is the area of their union? Let A, B, and C be the three circular regions. A∪B∪C can be seen to be equal to the union of three 60° sectors of radius 1, call them X, Y, and Z. The intersection of any 2 or 3 of these is an equilateral triangle with side length 1. Applying PIE, , we have |XUYUZ| = |X| + |Y| + |Z| - (|X∪Y| + |Y∪Z| + |Z∪X|) + |X∪Y∪Z| which is equal to 3*3*π/6 – 3*√3/4 + √3/4 = π/2 - √3/2. The intersection of any two of A, B, or C has area 2π/3 - √3/2, as shown in class. Applying PIE, |AUBUC| = |A| + |B| + |C| - (|A∪B| + |B∪C| + |C∪A|) + |A∪B∪B| equal to 3π - 3*(2π/3 - √3/2) + (π/2 - √3/2) = 3π/2 + √3 3. A diagonal of polygon is any line segment between vertices which is not an edge of the polygon.
    [Show full text]
  • Magic’ September 17, 2018 Version 1.5-9 Date 2018-09-14 Title Create and Investigate Magic Squares Author Robin K
    Package ‘magic’ September 17, 2018 Version 1.5-9 Date 2018-09-14 Title Create and Investigate Magic Squares Author Robin K. S. Hankin Depends R (>= 2.10), abind Description A collection of efficient, vectorized algorithms for the creation and investigation of magic squares and hypercubes, including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The package includes methods for creating normal magic squares of any order greater than 2. The ultimate intention is for the package to be a computerized embodiment all magic square knowledge, including direct numerical verification of properties of magic squares (such as recent results on the determinant of odd-ordered semimagic squares). Some antimagic functionality is included. The package also serves as a rebuttal to the often-heard comment ``I thought R was just for statistics''. Maintainer ``Robin K. S. Hankin'' <[email protected]> License GPL-2 URL https://github.com/RobinHankin/magic.git NeedsCompilation no Repository CRAN Date/Publication 2018-09-17 09:00:08 UTC R topics documented: magic-package . .3 adiag . .3 allsubhypercubes . .5 allsums . .6 apad.............................................8 apl..............................................9 1 2 R topics documented: aplus . 10 arev ............................................. 11 arot ............................................. 12 arow............................................. 13 as.standard . 14 cilleruelo . 16 circulant . 17 cube2 . 18 diag.off . 19 do.index . 20 eq .............................................. 21 fnsd ............................................. 22 force.integer . 23 Frankenstein . 24 hadamard . 24 hendricks . 25 hudson . 25 is.magic . 26 is.magichypercube . 29 is.ok . 32 is.square.palindromic . 33 latin . 34 lozenge . 36 magic . 37 magic.2np1 . 38 magic.4n . 39 magic.4np2 . 40 magic.8 . 41 magic.constant .
    [Show full text]
  • Correspondence Course Units
    Astrology 2 - Unit 4 | Level 4 www.gnosis-correspondence-course.net - 2 - Astrology 2 - Unit 4 | Level 4 www.gnosis-correspondence-course.net - 3 - Astrology 2 - Unit 4 | Level 4 AstrologyAstrology 22 The Magic Squares IntroductionIntroduction ‘In order to invoke the gods, one must know the mathematical figures of the stars (magic squares). Symbols are the clothing of numbers. Numbers are the living entities of the inner worlds. Planetary figures produce tremendous immediate results. We can work with the stars from a distance. Mathematical figures act upon the physical world in a tremendous way. These figures must be written on seven different boards.' Samael Aun Weor www.gnosis-correspondence-course.net - 4 - Astrology 2 - Unit 4 | Level 4 AA LittleLittle HistoryHistory A magic square is a table on which a series of whole numbers are arranged in a square or mould, in such a way that the result obtained by adding up the numbers by columns, rows and main diagonals is the same, this result being the square's magic constant. The first record of a magic square appearing in history is found in China, about the year 2,800 BC. This magic square is called ‘Lo-shu’ (Lo was the name of the river today known as ‘Yellow River’. Shu means 'book' in Chinese. ‘Lo-shu’ means, therefore, ‘the book of the Yellow River’). Legend has it that in a remote past big floods were devastating a Chinese region. Its inhabitants tried to appease the wrath of the river Lo by offering sacrifices, but they failed to come up with the adequate amount of them to succeed.
    [Show full text]
  • THE ZEN of MAGIC SQUARES, CIRCLES, and STARS Also by Clifford A
    THE ZEN OF MAGIC SQUARES, CIRCLES, AND STARS Also by Clifford A. Pickover The Alien IQ Test Black Holes: A Traveler’s Guide Chaos and Fractals Chaos in Wonderland Computers and the Imagination Computers, Pattern, Chaos, and Beauty Cryptorunes Dreaming the Future Fractal Horizons: The Future Use of Fractals Frontiers of Scientific Visualization (with Stuart Tewksbury) Future Health: Computers and Medicine in the 21st Century The Girl Who Gave Birth t o Rabbits Keys t o Infinity The Loom of God Mazes for the Mind: Computers and the Unexpected The Paradox of God and the Science of Omniscience The Pattern Book: Fractals, Art, and Nature The Science of Aliens Spider Legs (with Piers Anthony) Spiral Symmetry (with Istvan Hargittai) The Stars of Heaven Strange Brains and Genius Surfing Through Hyperspace Time: A Traveler’s Guide Visions of the Future Visualizing Biological Information Wonders of Numbers THE ZEN OF MAGIC SQUARES, CIRCLES, AND STARS An Exhibition of Surprising Structures across Dimensions Clifford A. Pickover Princeton University Press Princeton and Oxford Copyright © 2002 by Clifford A. Pickover Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 3 Market Place, Woodstock, Oxfordshire OX20 1SY All Rights Reserved Library of Congress Cataloging-in-Publication Data Pickover, Clifford A. The zen of magic squares, circles, and stars : an exhibition of surprising structures across dimensions / Clifford A. Pickover. p. cm Includes bibliographical references and index. ISBN 0-691-07041-5 (acid-free paper) 1. Magic squares. 2. Mathematical recreations. I. Title. QA165.P53 2002 511'.64—dc21 2001027848 British Library Cataloging-in-Publication Data is available This book has been composed in Baskerville BE and Gill Sans.
    [Show full text]
  • Geometrygeometry
    Math League SCASD 2019-20 Meet #5 GeometryGeometry Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Solid Geometry (Volume and Surface Area) 3. Number Theory: Set Theory and Venn Diagrams 4. Arithmetic: Combinatorics and Probability 5. Algebra: Solving Quadratics with Rational Solutions, including word problems Important Information you need to know about GEOMETRY: Solid Geometry (Volume and Surface Area) Know these formulas! SURFACE SHAPE VOLUME AREA Rect. 2(LW + LH + LWH prism WH) sum of areas Any prism H(Area of Base) of all surfaces Cylinder 2 R2 + 2 RH R2H sum of areas Pyramid 1/3 H(Base area) of all surfaces Cone R2 + RS 1/3 R2H Sphere 4 R2 4/3 R3 Surface Diagonal: any diagonal (NOT an edge) that connects two vertices of a solid while lying on the surface of that solid. Space Diagonal: an imaginary line that connects any two vertices of a solid and passes through the interior of a solid (does not lie on the surface). Category 2 Geometry Calculator Meet Meet #5 - April, 2018 1) A cube has a volume of 512 cubic feet. How many feet are in the length of one edge? 2) A pyramid has a rectangular base with an area of 119 square inches. The pyramid has the same base as the rectangular solid and is half as tall as the rectangular solid. The altitude of the rectangular solid is 10 feet. How many cubic inches are in the volume of the pyramid? 3) Quaykah wants to paint the inside of a cylindrical storage silo that is 63 feet high and whose circular floor has a diameter of 19 feet.
    [Show full text]
  • Franklin Squares ' a Chapter in the Scientific Studies of Magical Squares
    Franklin Squares - a Chapter in the Scienti…c Studies of Magical Squares Peter Loly Department of Physics, The University of Manitoba, Winnipeg, Manitoba Canada R3T 2N2 ([email protected]) July 6, 2006 Abstract Several aspects of magic(al) square studies fall within the computa- tional universe. Experimental computation has revealed patterns, some of which have lead to analytic insights, theorems or combinatorial results. Other numerical experiments have provided statistical results for some very di¢ cult problems. Schindel, Rempel and Loly have recently enumerated the 8th order Franklin squares. While classical nth order magic squares with the en- tries 1::n2 must have the magic sum for each row, column and the main diagonals, there are some interesting relatives for which these restrictions are increased or relaxed. These include serial squares of all orders with sequential …lling of rows which are always pandiagonal (having all parallel diagonals to the main ones on tiling with the same magic sum, also called broken diagonals), pandiagonal logic squares of orders 2n derived from Karnaugh maps, with an application to Chinese patterns, and Franklin squares of orders 8n which are not required to have any diagonal prop- erties, but have equal half row and column sums and 2-by-2 quartets, as well as stes of parallel magical bent diagonals. We modi…ed Walter Trump’s backtracking strategy for other magic square enumerations from GB32 to C++ to perform the Franklin count [a data…le of the 1; 105; 920 distinct squares is available], and also have a simpli…ed demonstration of counting the 880 fourth order magic squares using Mathematica [a draft Notebook].
    [Show full text]
  • MAΘ Theta CPAV Solutions 2018
    MAΘ Theta CPAV Solutions 2018 Since the perimeter of the square is 40, one side of the square is 10 & its area is 100. Since the 1. B diameter of the circle is 8 its radius is 4. One quarter of the circle is inside the square; its area is 1 1 퐴 = 휋(42) = 휋(16) = 4휋. The area inside the square but outside the circle is 100 − 4휋. 4 4 Since the diameter of the sphere is 20 feet, its radius is 10 feet. 4 4 4000휋 1200휋 푉 = 휋푟3 = 휋103 = ; 퐴 = 4휋푟2 = 4휋102 = 400휋 = ; 3 3 3 3 2. C 1200휋 4000휋 5200휋 퐴 + 푉 = + = 3 3 3 3. B Since the diameter is 18 퐶 = 휋푑 = 18휋 4. A 3 3 288 2 푉 = 푎 ⁄ = 12 ⁄ = 1728⁄ = 288⁄ = √ ⁄ = 144√2 6√2 6√2 6√2 √2 2 20 Use the given circumference to find the radius of the circle. 퐶 = 2휋푟, 40 = 2휋푟, 20 = 휋푟, ⁄휋 = 푟 . If the inscribed angle is 45∘ its arc is 90∘ and has length 10, one quarter of the circumference. The chord of the 5. D segment is the hypotenuse of an isosceles right triangle whose legs are radii of the circle. 20 20√2 ℎ = 푙푒√2 = ⁄휋 √2 = ⁄휋 20√2 Perimeter of the segment is arc length plus chord: 10 + ⁄휋 Since the diameter of the sphere is the space diagonal of the inscribed cube, we must first find the diameter of the sphere. 6. B 4 125휋 3 4 125휋(3√3) 125 27 5 3 푉 = 휋푟3; √ = 휋푟3; = 푟3; √ = 푟3; √ = 푟 and diameter is 5√3 3 2 3 8휋 8 2 Space diagonal of a cube is 푎√3 = 5√3; 푎 = 5 and surface area is 6푎2 = 6 ∙ 52 = 150 Radius found using the circular cross-section area 퐴 = 휋푟2; 9휋 = 휋푟2; 푟 = 3; ℎ = 3푟 == 9 Volume is equal to volume of cylinder minus volume of hemisphere.
    [Show full text]
  • The Art of Sigils
    The Art of Sigils Week 1: Desig! What are sigils? “a sign or image considered magical; a seal or signet” ♰ x Well, that’s a nice broad definition. Sigils in History monograms, goetic seals, symbols of profession, familial seals, alchemical and astrological symbols, icons, logos If a sign or image causes a shift in your mental/ emotional state, it can be used as a magical tool and thus can be considered a sigil. What are sigils? Visual focus for ritual, or meditation; magickal identifier Auditory and movement-based sigils work on the same principles, but we’re not going to get into them here. A way to bypass the conscious mind, as all the thinking is done during its construction, not its use Two types: labels and goals How are they used? Creation The sigil is made with full conscious intent, and then laid aside until the analytic basis for it has been forgotten. Charging The sigil is charged in a ritual context with energy related to its purpose. Example: work yourself into an ecstatic or trance state before gazing at the sigil; use it as a focus in meditation; touch with a drop of blood or sexual fluid Use Where the sigil is set loose to do its work. (May be synonymous with destruction in some cases) Focus for meditation, worn as jewelry, kept under a pillow Destruction After the ritual or once the goal is accomplished You’ve bound a piece of your Will into this object - once its purpose is done, give it back! Not applicable in all cases (more for goal-type sigils) How are they made? Most common (and easiest) is drawn on paper Draw, paint, carve, etch, mold, build! Just keep final use in mind It’s harder to destroy a cast-silver sigil, or to whirl in ecstasy about the temple bearing a 2’x3’ monstrosity carved in wood.
    [Show full text]
  • Package 'Magic'
    Package ‘magic’ February 15, 2013 Version 1.5-4 Date 3 July 2012 Title create and investigate magic squares Author Robin K. S. Hankin Depends R (>= 2.4.0), abind Description a collection of efficient, vectorized algorithms for the creation and investiga- tion of magic squares and hypercubes,including a variety of functions for the manipulation and analysis of arbitrarily dimensioned arrays. The package includes methods for creating normal magic squares of any order greater than 2. The ultimate intention is for the package to be a computerized embodi- ment all magic square knowledge,including direct numerical verification of properties of magic squares (such as recent results on the determinant of odd-ordered semimagic squares). Some antimagic functionality is included. The package also serves as a rebuttal to the often-heard comment ‘‘I thought R was just for statistics’’. Maintainer Robin K. S. Hankin <[email protected]> License GPL-2 Repository CRAN Date/Publication 2013-01-21 12:31:10 NeedsCompilation no R topics documented: magic-package . .3 adiag . .3 allsubhypercubes . .5 allsums . .6 apad.............................................8 apl..............................................9 1 2 R topics documented: aplus . 10 arev ............................................. 11 arot ............................................. 12 arow............................................. 13 as.standard . 14 cilleruelo . 16 circulant . 17 cube2 . 18 diag.off . 19 do.index . 20 eq .............................................. 21 fnsd ............................................. 22 force.integer . 23 Frankenstein . 24 hadamard . 24 hendricks . 25 hudson . 25 is.magic . 26 is.magichypercube . 29 is.ok . 32 is.square.palindromic . 33 latin . 34 lozenge . 36 magic . 37 magic.2np1 . 38 magic.4n . 39 magic.4np2 . 40 magic.8 . 41 magic.constant . 41 magic.prime . 42 magic.product .
    [Show full text]
  • Pearls of Wisdom Cover Images Pearls of Wisdom Details of Tiraz Textile, Yemen Or Egypt, 10Th–12Th Centuries, Cotton with Resist-Dyed Warp (Ikat), Ink, and Gold Paint
    Pearls of Wisdom Cover Images Pearls of Wisdom Details of tiraz textile, Yemen or Egypt, 10th–12th centuries, cotton with resist-dyed warp (ikat), ink, and gold paint. Kelsey Museum of Archaeology, 22621 (cat. no. 3). Published by The Arts of Islam Kelsey Museum of Archaeology at the University of Michigan 434 South State Street Ann Arbor, Michigan 48109-1390 http://www.lsa.umich.edu/kelsey/research/publications Distributed by ISD 70 Enterprise Drive, Suite 2 Bristol, CT 06010 USA phone: 860.584.6546 email: [email protected] christiane gruber and ashley dimmig Exhibition Website http://lw.lsa.umich.edu/kelsey/pearls/index.html © Kelsey Museum of Archaeology 2014 Kelsey Museum Publication 10 ISBN 978-0-9906623-0-3 Ann Arbor, Michigan 2014 Pearls of Wisdom The Arts of Islam at the University of Michigan christiane gruber and ashley dimmig Kelsey Museum Publication 10 Ann Arbor, Michigan 2014 Contents Catalogue Essay 1 Catalogue of Objects Introduction 27 Everyday Beauty Functional Beauty 32 Personal Adornment 40 Play and Protection Games and Toys 50 Amulets and Talismans 54 Surf and Turf 61 Media Metaphors Media Metaphors 70 Tiraz and Epigraphy 82 Coins and Measures 86 Illumination Lamps and Lighting 96 Illumination and Enlightenment 101 Bibliography 109 Acknowledgments 117 Accession Number/Catalogue Number Concordance 118 Subject Index 119 About the Authors 121 Handwriting is the necklace of wisdom. It serves to sort the pearls of wisdom, to bring its dispersed pieces into good order, to put its stray bits together.1 —Abu Hayyan al-Tawhidi (d. after 1009–1010) n his treatise on penmanship, the medieval calligrapher Abu Hayyan Fig.
    [Show full text]
  • Math and Magic Squares
    French Officers Problem Latin Squares Greco-Latin Squares Magic Squares Math and Magic Squares Randall Paul September 21, 2015 Randall Paul Math and Magic Squares French Officers Problem Latin Squares Greco-Latin Squares Magic Squares Table of contents 1 French Officers Problem 2 Latin Squares 3 Greco-Latin Squares 4 Magic Squares Randall Paul Math and Magic Squares French Officers Problem Latin Squares Greco-Latin Squares Magic Squares Leonhard Euler's French Officers Problem: Arrange thirty-six officers in a six-by-six square from six regiments: 1st,2nd,3rd,4th,5th,6th with six ranks: Recruit, Lieutenant, Captain, Major, Brigadier, General so that each row and column has one representative from each regiment and rank. Randall Paul Math and Magic Squares French Officers Problem Latin Squares Greco-Latin Squares Magic Squares Easy for 25 officers in a 5 × 5 square: 1L 2C 3M 4B 5G 5C 1M 2B 3G 4L 4M 5B 1G 2L 3C 3B 4G 5L 1C 2M 2G 3L 4C 5M 1B Randall Paul Math and Magic Squares But Not for: 2 × 2 6 × 6 French Officers Problem Latin Squares Greco-Latin Squares Magic Squares What's the pattern? Can be done for: 3 × 3, 5 × 5, 7 × 7 All n × n for odd n 4 × 4, even 8 × 8! Randall Paul Math and Magic Squares French Officers Problem Latin Squares Greco-Latin Squares Magic Squares What's the pattern? Can be done for: 3 × 3, 5 × 5, 7 × 7 But Not for: All n × n 2 × 2 for odd n 6 × 6 4 × 4, even 8 × 8! Randall Paul Math and Magic Squares No! Not Allowed! French Officers Problem Latin Squares Greco-Latin Squares Magic Squares No Solution to the 2 × 2 French Officers Problem
    [Show full text]
  • Homework 2: Vectors and Dot Product
    Math 21a: Multivariable calculus Fall 2017 Homework 2: Vectors and Dot product This homework is due Monday, 9/11 respectively Tuesday 9/12 at the beginning of class. 1 A kite surfer gets pulled with a force F~ = h7; 1; 4i. She moves with velocity ~v = h4; −2; 1i. The dot product of F~ with ~v is power. a) Find the angle between the F~ and ~v. b) Find the vector projection of the F~ onto ~v. Solution: (a) To find the angle between the force and velocity, we use the formula: F · v cos θ = : jF jjvj p p 2 2 2 The magnitude of the forcep is 7 + 1 + 4 = 66. The mag- nitude of the velocity is 21. The dot product F · v = 30. Thus, F · v 30 cos θ = = p p jF jjvj 66 · 21 Hence, θ = arccos(p30 ). 1386 (b) The projection of F~ onto ~v is given by F · v 30 10 projvF = v = p 2 h4; −2; 1i = h4; −2; 1i: jvj2 21 7 2 Light shines long the vector ~a = ha1; a2; a3i and reflects at the three coordinate planes where the angle of incidence equals the 1 angle of reflection. Verify that the reflected ray is −~a. Hint. Reflect first at the xy-plane. Solution: If we reflect at the xy-plane, then the vector ~a = ha1; a2; a3i gets changed to ha1; a2; −a3i. You can see this by watching the reflection from above. Notice that the first two components stay the same. Do the same process with the other planes.
    [Show full text]