Imwrsify Mcranfans =. Ihtematicnal

Total Page:16

File Type:pdf, Size:1020Kb

Imwrsify Mcranfans =. Ihtematicnal INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho­ tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copjorighted materials are removed from the manuscript, a note ap­ pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec­ tioning the original, beginning at the upper left hand comer and continu­ ing from left to right in equal sections with small overlaps. E^ch oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. • 4. Most photographs reproduce acceptably on positive microfilm or micro­ fiche but lack clarity on xerographic copies made from the microfilm. Fbr an additional charge, all photographs are available in black and white standard 35mm slide format.* *Por more information about black ?nd white slides or enlarged paper reproductions, please contact the Dissertations Customer Services Department IMwrsify Mcranfans =. Ihtematicnal 8603069 Vutetakis, David George ELECTROCHEMICAL OXIDATION OF CARBONACEOUS MATERIALS DISPERSED IN MOLTEN CARBONATE The Ohio State University Ph.D. 1985 University Microfilms I ntern&tionsi aoo N. Zeeb Road, Ann Arbor. Ml 48106 Copyright 1985 by Vutetakis, David George All Rights Reserved PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V 1. Glossy photographs or pages, 2. Colored illustrations, paper or print______ 3. Photographs with dark background_____ A. Illustrations are poor copy______ 5. Pages with black marks, not original copy. 6. Print shows through as there is text on both sides of page _ 7. Indistinct, broken or small print on several pages 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine_______ 10. Computer printout pages with indistinct print 11. Page(s)____________ lacking when material received, and not available from school or author. 12. Page(s)____________ seem to be missing in numbering only as text follows. 13. Two pages num bered . Text follows. 14. Curling and wrinkled pages_______ 15. Dissertation contains pages with print at a slant, filmed as received_________ 16. Other ____ University Microfilms international ELECTROCHEMICAL OXIDATION OF CARBONACEOUS MATERIALS DISPERSED IN MOLTEN CARBONATE DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David George Vutetakis, B.S.Ch.E., M.S. ***** The Ohio State University 1985 Dissertation Committee: Approved by D. R. Skidmore J. F. Davis Adviser L. S. Fan Department of Chemical Engineering Copyright by David George Vutetakis 1985 To My Parents n ACKNOWLEDGEMENTS First, I want to thank my adviser, Professor Duane Skidmore, for his supervision of the Ph.D. project, his contributions concerning the experimental work, and his helpful suggestions in preparing this dissertation. Professor Robert Rapp is thanked for giving technical guidance in the area of high temperature molten salt electrochemistry. Dr. Harlan Byker, formerly of Battelle Memorial Institute, deserves credit for his effort in getting the Ph.D. project underway. Appreciation is given to Bob Canegali for helping with construction of the experimental apparatus, to Mike Kukla for assisting with equipment problems, and to Joe Baling for supplying alumina crucibles and other refractory items. Bud Farrar, Professor Karlis Svanks, and Professor Ron Tettenhorst are thanked for performing analytical measurements. The dissertation was typed by Pat Osborn, and her hard work is grate­ fully acknowledged. Financial assistance was graciously provided by the Department of Chemical Engineering, the Graduate School, Dupont, and Battelle Memorial Institute, and their support is gratefully acknowledged. I am deeply indebted to my wife, Liz, and our children for their patience and love, which counted more than words can say. Most of all I would like to thank the Lord God, who gave the motivation to accomplish what was set before me. i i i VITA August 10, 1957 ................... Born in Canton, Ohio 1975... ................................. Born of God through faith in Jesus Christ 1980 ................................. B.S.Ch.E., The Ohio State University, Columbus, Ohio 1981 ................................. M.S.Ch.E., The Ohio State University, Columbus, Ohio 1980-1984 ............................. Part-time Research at Battelle Memorial Institute, Columbus, Ohio 1981-1985 ............................. Ph.D. Candidate, Department of Chemical Engineering, The Ohio State University, Columbus, Ohio PUBLICATIONS D.O. Vutetakis, "Photoelectrolysis of Acetate Solutions Using Semiconductor Electrodes," M.S. Thesis, The Ohio State University, Columbus, Ohio (1981). IV FIELDS OF STUDY Major Field; Chemical Engineering Thermodynamics - Professor H. C. Hershey Heat Transfer - Professor T. L. Sweeney Mass Transfer - Professor C. J. Genakoplis Momentum Transfer - Professor R. S. Brodkey Chemical Kinetics - Professor E. R. Haering Unit Operations - Professor E. E. Smith Process Control - Professor R. D. Mohler Coal Processing - Professor D. R. Skidmore Minor Field: Corrosion and Electrochemistry Corrosion Engineering - Professors F.H. Beck and D. D. Macdonald Electrochemistry - Professor T. Kuwana TABLE OF CONTENTS PAGE ACKNOWLEDGMENTS......................................... H i VITA ...................................................... iv LIST OF T A B L E S ............................................. viii LIST OF F I G U R E S ........................................... x CHAPTER I. INTRODUCTION ................................... 1 CHAPTER II. LITERATURE REVIEW ............................. 3 2.1. Characteristics of Carbonaceous Materials .......... 3 2.2. Characteristics of Molten Alkali Carbonates .... 29 2.3. Previous Work Involving Electrochemical Oxidation of Carbonaceous Materials in Molten Electrolytes . 76 2.A. Related Literature................................... 96 CHAPTER III. EXPERIMENTAL METHODS ......................... 100 3.1. Objectives......................................... 100 3.2. Apparatus ......................................... 101 3.3. Feedstocks......................................... Ill 3.4. Procedures......................................... 114 CHAPTER IV. EXPERIMENTAL RESULTS ......................... 119 4.1. Overview of E x p e r i m e n t s ........................... 119 4.2. Open Circuit Potential D a t a ....................... 123 4.3. Current-Voltage Da t a ............................... 129 4.4. Gas Evolution D a t a ................................. 169 4.5. Surface Behavior of Gold A n o d e ..................... 172 CHAPTER V. DISCUSSION OF RESULTS ......................... 174 5.1. Thermodynamic Analysis of OCP D a t a ................. 174 5.2. Interpretation of I-V D a t a ......................... 180 5.3. Comparison of Data with Related Investigations . 190 5.4. Mechanism of Anodic Process ....................... 200 VI CHAPTER VI. CONCLUSIONS AND RECOMMENDATIONS .............. 210 6.1. Conclusions ....................................... 210 6.2. Recommendations................................... 216 CHAPTER VII. S U M M A R Y ..................................... 219 APPENDICES A. Analytical Data of Coal and Activated C a r b o n......... 221 B. Thermodynamimc Calculations .................... 227 BIBLIOGRAPHY ............................................. 231 v n LIST OF TABLES TABLE PAGE 1. Classification of Coals by R a n k ........................ 4 2. Analytical Data of Various American Coals .............. 12 3. Typical Limits of Ash Composition of U.S. Bituminous Coals ................................................. 13 1*. Comparison of Gasification Rates In C O ^ ................ 18 5. Alkali Carbonate Melting Points ........................ 31 6. Densities of Molten Alkali Carbonates .... .......... 33 7. Contact Angles of Ternary Carbonate Eutetlc with Various Materials at 4 0 0 ° C ............................. 3** 8. Viscosities of Molten Alkali Carbonates ................ 35 9. Electrical Conductivities of the Ternary Carbonate E u t e c t i c ............................................... 37 10. ûG^ of Selected Compounds............................... 46 11. Equilibrium Constants for Carbonate Dissociation .... 47 12. Experimental Equilibrium Constants of Carbonate Dissociation ........................................... 47 13. Summary of Fuel Cell Work Using Carbon Anodes In Molten Electrolytes ........................................... 78 14. Types of Working Electrodes ............................. 101 15. Types of Reference Electrode Sheaths .................. 103 16. Summary of Completed Experiments ...................... 120 17. OCP of Various Carbon Types at 700® C .................. 127 viii 18. Effect of Temperature History on OCP
Recommended publications
  • March 8, I 877J
    March 8, I 877J 1VATURE 4or logical Council to the Scottis~ Meteorol~gical Soc_iety, as are "vVe do not deny that an elementary body may in certain necessary for obtaining observations at stations reqmred for the cases give different spectra. The absorption spectrum of iodine, purposes of the Council ; for securing the pmper inspection of for instance, is quite different from its emission spectrum stations the registers from which are required for the general obtained by means of the electric spark. All bodies existing in purposes of the Council ; for t~e needful compilati?n and c_h~ck different allotropic states will give different spectra correspond­ of such registers ; and for meetmg other charges directly ansmg ing to these different allotropic states provided that the allotropic from these services ; or for special researches couducted. by the states still exist at the temperature of incandescence. Society with the approval of the Council ; but that no grants should. be made to ordinary observers, nor for any general pur­ "Oxygen, for instance, would present two different absorption poses of the society which lie beyond the scope of the operations spectra, one belonging to oxygen the other to ozone. But as to be placed under the Council. ozone is destroyed at a high temperature, only one spectrum of 23. We think that the same principle should be applied to all incandescent oxygen can exist. simil!lr local bodies interested in the study of Meteorology ; so " Sulphur in the solid state exists in different allotropic states, that, in fact, no payments should. be made to them except for and some observations lead us to believe that even as a gas it results sought for by the Council.
    [Show full text]
  • Carbon Dioxide and Chemical Looping: Current Research Trends Lukas C
    Review Cite This: Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX pubs.acs.org/IECR 110th Anniversary: Carbon Dioxide and Chemical Looping: Current Research Trends Lukas C. Buelens, Hilde Poelman, Guy B. Marin, and Vladimir V. Galvita* Laboratory for Chemical Technology, Ghent University, Technologiepark 125, B-9052 Ghent, Belgium *S Supporting Information ABSTRACT: Driven by the need to develop technologies for converting CO2, an extraordinary array of chemical looping based process concepts has been proposed and researched over the past 15 years. This review aims at providing first a historical context of the molecule CO2, which sits at the center of these developments. Then, different types of chemical looping related to CO2 are addressed, with attention to process concepts, looping materials, and reactor configu- rations. Herein, focus lies on the direct conversion of carbon dioxide into carbon monoxide, a process deemed to have economic potential. 1. THE DISCOVERY OF CARBON DIOXIDE designate CO2 and CO probably occurred only after the Carbon dioxide was probably discovered around 1640 by Jan foundation of the International Union on Pure and Applied Baptist van Helmont, who named it spiritus sylvestre.1,2 When Chemistry (IUPAC) in 1919. burning a piece of wood, van Helmont noticed that the mass of 1,2 2. CARBON DIOXIDE AND THE EARTH’S CLIMATE the ash was considerably less than that of the original wood. He argued that a gas had volatilized from the wood.1,2 Over a In the 1820s, Joseph Fourier made heat transfer calculations hundred years later, around 1750, Joseph Black looked into based on knowledge of that time−between the Sun and the 9,10 carbon dioxide released by magnesium carbonate upon heating Earth.
    [Show full text]
  • Natural Areas Inventory of Bradford County, Pennsylvania 2005
    A NATURAL AREAS INVENTORY OF BRADFORD COUNTY, PENNSYLVANIA 2005 Submitted to: Bradford County Office of Community Planning and Grants Bradford County Planning Commission North Towanda Annex No. 1 RR1 Box 179A Towanda, PA 18848 Prepared by: Pennsylvania Science Office The Nature Conservancy 208 Airport Drive Middletown, Pennsylvania 17057 This project was funded in part by a state grant from the DCNR Wild Resource Conservation Program. Additional support was provided by the Department of Community & Economic Development and the U.S. Fish and Wildlife Service through State Wildlife Grants program grant T-2, administered through the Pennsylvania Game Commission and the Pennsylvania Fish and Boat Commission. ii Site Index by Township SOUTH CREEK # 1 # LITCHFIELD RIDGEBURY 4 WINDHAM # 3 # 7 8 # WELLS ATHENS # 6 WARREN # # 2 # 5 9 10 # # 15 13 11 # 17 SHESHEQUIN # COLUMBIA # # 16 ROME OR WELL SMITHFI ELD ULSTER # SPRINGFIELD 12 # PIKE 19 18 14 # 29 # # 20 WYSOX 30 WEST NORTH # # 21 27 STANDING BURLINGTON BURLINGTON TOWANDA # # 22 TROY STONE # 25 28 STEVENS # ARMENIA HERRICK # 24 # # TOWANDA 34 26 # 31 # GRANVI LLE 48 # # ASYLUM 33 FRANKLIN 35 # 32 55 # # 56 MONROE WYALUSING 23 57 53 TUSCARORA 61 59 58 # LEROY # 37 # # # # 43 36 71 66 # # # # # # # # # 44 67 54 49 # # 52 # # # # 60 62 CANTON OVERTON 39 69 # # # 42 TERRY # # # # 68 41 40 72 63 # ALBANY 47 # # # 45 # 50 46 WILMOT 70 65 # 64 # 51 Site Index by USGS Quadrangle # 1 # 4 GILLETT # 3 # LITCHFIELD 8 # MILLERTON 7 BENTLEY CREEK # 6 # FRIENDSVILLE # 2 SAYRE # WINDHAM 5 LITTLE MEADOWS 9
    [Show full text]
  • Acidification in the US Southeast
    fmars-07-00548 July 8, 2020 Time: 19:8 # 1 REVIEW published: 10 July 2020 doi: 10.3389/fmars.2020.00548 Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network Emily R. Hall1*, Leslie Wickes2, Louis E. Burnett3, Geoffrey I. Scott4, Debra Hernandez5, Kimberly K. Yates6, Leticia Barbero7, Janet J. Reimer8, Mohammed Baalousha4, Jennifer Mintz9, Wei-Jun Cai8, J. Kevin Craig10, M. Richard DeVoe11, William S. Fisher12, Terri K. Hathaway13, Elizabeth B. Jewett9, Zackary Johnson14, Paula Keener15, Rua S. Mordecai16, Scott Noakes17, Charlie Phillips18, Paul A. Sandifer19, Astrid Schnetzer20 and Jay Styron21 1 Mote Marine Laboratory, Sarasota, FL, United States, 2 Thrive Blue Consulting, Charleston, SC, United States, 3 Grice Marine Laboratory, College of Charleston, Charleston, SC, United States, 4 Arnold School of Public Health, University of South Carolina, Columbia, SC, United States, 5 Southeastern Coastal Ocean Observing and Research Regional Edited by: Association, Charleston, SC, United States, 6 US Geological Survey, St. Petersburg, FL, United States, 7 National Oceanic Christopher Edward Cornwall, and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States, 8 College Victoria University of Wellington, of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States, 9 National Oceanic and Atmospheric New Zealand Administration, Ocean Acidification Program, Silver Spring, MD, United States,
    [Show full text]
  • Wild Trout Waters (Natural Reproduction) - September 2021
    Pennsylvania Wild Trout Waters (Natural Reproduction) - September 2021 Length County of Mouth Water Trib To Wild Trout Limits Lower Limit Lat Lower Limit Lon (miles) Adams Birch Run Long Pine Run Reservoir Headwaters to Mouth 39.950279 -77.444443 3.82 Adams Hayes Run East Branch Antietam Creek Headwaters to Mouth 39.815808 -77.458243 2.18 Adams Hosack Run Conococheague Creek Headwaters to Mouth 39.914780 -77.467522 2.90 Adams Knob Run Birch Run Headwaters to Mouth 39.950970 -77.444183 1.82 Adams Latimore Creek Bermudian Creek Headwaters to Mouth 40.003613 -77.061386 7.00 Adams Little Marsh Creek Marsh Creek Headwaters dnst to T-315 39.842220 -77.372780 3.80 Adams Long Pine Run Conococheague Creek Headwaters to Long Pine Run Reservoir 39.942501 -77.455559 2.13 Adams Marsh Creek Out of State Headwaters dnst to SR0030 39.853802 -77.288300 11.12 Adams McDowells Run Carbaugh Run Headwaters to Mouth 39.876610 -77.448990 1.03 Adams Opossum Creek Conewago Creek Headwaters to Mouth 39.931667 -77.185555 12.10 Adams Stillhouse Run Conococheague Creek Headwaters to Mouth 39.915470 -77.467575 1.28 Adams Toms Creek Out of State Headwaters to Miney Branch 39.736532 -77.369041 8.95 Adams UNT to Little Marsh Creek (RM 4.86) Little Marsh Creek Headwaters to Orchard Road 39.876125 -77.384117 1.31 Allegheny Allegheny River Ohio River Headwater dnst to conf Reed Run 41.751389 -78.107498 21.80 Allegheny Kilbuck Run Ohio River Headwaters to UNT at RM 1.25 40.516388 -80.131668 5.17 Allegheny Little Sewickley Creek Ohio River Headwaters to Mouth 40.554253 -80.206802
    [Show full text]
  • Information Sheet
    INFORMATION SHEET Proposed Total Maximum Daily Load (TMDL) for the Shamokin Creek Watershed, Northumberland, Montour, and Columbia Counties, Pennsylvania What is being proposed? A TMDL plan to improve the quality of water in Shamokin Creek and its tributaries, including North Branch Shamokin Creek, Quaker Run, Coal Run, Carbon Run, Locust Creek, and Buck Run. Who is proposing the plan? To whom and why? The Susquehanna River Basin Commission (SRBC), in cooperation with the Pottsville District Mining Office, is proposing to submit the plan to the Pennsylvania Department of Environmental Protection (Pa. DEP) and U.S. Environmental Protection Agency (U.S. EPA) for review and approval as required by federal regulation. In 1995, U.S. EPA was sued for not developing TMDLs when Pennsylvania failed to do so. Pa. DEP has entered into an agreement with U.S. EPA to develop TMDLs for certain specified waters over the next several years. In order to assist Pennsylvania in the development of TMDLs, the SRBC entered into contract with Pa. DEP to develop several TMDLs within the Susquehanna River Basin. This TMDL has been developed in compliance with the state/U.S. EPA agreement. What is a TMDL? A Total Maximum Daily Load (TMDL) sets a ceiling on the pollutant loads that can enter a water body so the water body will meet water quality standards. The Clean Water Act requires states to list all waters that do not meet their water quality standards even after pollution controls required by law are in place. For these waters, the state must calculate how much of a substance can be put in the water without violating the standard and distribute that quantity to all the sources of the pollutant on that water body.
    [Show full text]
  • Materials and Chemical Sciences Division Lawrence Berkeley Laboratory • University of California ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755
    RECEI VED LBL-27307 c: ~ LAWRE~lCE n" f'' ;:.:v L.l\808!l.TORY 13 E,,.... L~· FEB 8 '1990 Center for Advanced Materials L Bi·\/~fN AND CAM ------DOCUMENTS SECTION To be published as a chapter in Alkali Adsorption on J"' Metals and Semiconductors, H.P. Bonzel, A.M. Bradshaw, and G. Ertl, Eds., Elsevier Science Publishers, BV, Amsterdam, The Netherlands, 1989 Alkali Metals as Structure and Bonding Modifiers of Transition l'VIetal Catalysts G.A. Somorjai and E.L. Garfunkel June 1989 TWO-WEEK LOAN COPY This is a Library Circulating Copy which may be borrowed for two weeks. ,. / ' . Materials and Chemical Sciences Division Lawrence Berkeley Laboratory • University of California ONE CYCLOTRON ROAD, BERKELEY, CA 94720 • (415) 486-4755 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California.
    [Show full text]
  • Pennsylvania Northumberland Comprehensive Plan
    COALTOWNSHIP NORTHUMBERLANDCOUNTY PENNSYLVANIA COMPREHENSIVEPLAN AUGUST, 2003 Table of Contents I Introduction I1 Background A. Regional Influence B. Topography C. Local History D. Existing Land Use E. Community Facilities & Services F. Traffic Circulation 111 Statistical Analysis A. Population & Race B. Population in Adjacent Municipalities C. Persons by Age D. Gender E. Education F. Employment & Labor Force G. Housing Units IV Goals & Objectives IV LandUse IV Housing IV Economic Development IV Transportation IV Community Facilities I. Introduction This document presents Coal Township's Comprehensive Plan. It was prepared in accordance with the Pennsylvania Municipalities Planning Code (Act 170 of 1988). By adoption of this Comprehensive Plan by Coal Township's Board of Commissioners, it becomes the official statement prepared by the Planning Commission setting forth Coal Townships policies concerning desirable physical development and redevelopment of the community. The Coal Township Comprehensive Plan is not intended to be a detailed blueprint for community building. Rather the document is a general guide for land use to encourage municipal action to utilize the appropriate use or development of all land in a manner which will promote public health, safety, desirability and efficiency. The Comprehensive Plan supports Coal Township's efforts to foster community and economic growth. The fundamental purposes that the Coal Township Comprehensive Plan is intended to achieve are as follows: 1. To improve the physical environment of the Township as a setting for human activities - to make it more functional, beautiful, interesting, and efficient. This purpose is in accord with the broad mandate of the Township's Planning Commission in agreement with the Pennsylvania Municipalities Planning Code.
    [Show full text]
  • Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania
    Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania In partnership with the following major contributors and Technical Committee Organizations represented: The United States Geological Survey, PA Water Science Center Roger J. Hornberger, P.G., LLC (posthumously) Susquehanna River Basin Commission Dauphin County Conservation District Ian C. Palmer-Researcher PA Department of Environmental Protection-- Bureau of Abandoned Mine Reclamation, Bureau of Deep Mine Safety, & Pottsville District Mining Office MINE WATER RESOURCES OF THE ANTHRACITE REGION OF PENNSYLVANIA Foreword: Dedication to Roger J. Hornberger, P.G. (Robert E. Hughes) PART 1. Mine Water of the Anthracite Region Chapter 1. Introduction to the Anthracite Coal Region (Robert E. Hughes, Michael A. Hewitt, and Roger J. Hornberger, P.G.) Chapter 2. Geology of the Anthracite Coal Region (Robert E. Hughes, Roger J. Hornberger, P.G., Caroline M. Loop, Keith B.C. Brady, P.G., Nathan A. Houtz, P.G.) Chapter 3. Colliery Development in the Anthracite Coal Fields (Robert E. Hughes, Roger J. Hornberger, P.G., David L. Williams, Daniel J. Koury and Keith A. Laslow, P.G.) Chapter 4. A Geospatial Approach to Mapping the Anthracite Coal Fields (Michael A. Hewitt, Robert E. Hughes & Maynard L. (Mike) Dunn, Jr., P.G.) Chapter 5. The Development and Demise of Major Mining in the Northern Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., and Michael A. Hewitt) Chapter 6. The Development of Mining and Mine Drainage Tunnels of the Eastern Middle Anthracite Coal Field (Robert E. Hughes, Michael A. Hewitt, Jerrald Hollowell. P.G., Keith A. Laslow, P.G., and Roger J.
    [Show full text]
  • 4923: 70-614 DATE 6 February 1970 W
    CR- 72 963 10-047-009 (REV. 6/63) DIVISION Power Systems TM 4923: 70-614 DATE 6 February 1970 w. 0. 1139-78-2000 TECHNl CAL MEMO RAN DUM AUTHOR(S): F. H. Cassidy Oxides in NaK ABSTRACT The eutectic alloy of sodium and potassium (NaK) is very oxygen-reactive. A review was made of how the NaK and the SNAP-8 system are affected; the sources of oxygen contamination in a NaK system; the solubility of the oxide; the effects of the oxide in respect to the system and on the NaK; and oxide control methods. KEY WORDS: cold trapping, crystallization, hot trapping, mass transfer, NaK, oxides, potassium superoxide, sodium monoxide, solubility APPROVED: DEPARTMENT HEAD __ H. Derow NOTE: The information in this document is subject to revision as analysis progresses and additional data are acquired. AEROJ ET-GEN ERAL CORPORATION .. TABLE OF CONTENTS hge I. summary 1 11. Introduction 1 111. Alkali &tal Oxides 1 A. Sources of Oxygen 3 B. Solubility and Crystallization 4 C. The Effect of Oxygen on a Liquid Alkali Metal System 5 IV. Control of Alkali Metal Oxides 7 A. Operational Procedures to Prevent Contamination 7 B. Purification Techniques During Loop Opration 8 C. Other Inline Monitoring Devices 9 References 10 Figures Periodic Chart of the Elements 1 Binary Phase Diagram: Sodium/Potassium 2 Free Energy of Formation vs . Temperature for Selected Oxide 3 Equilibrium Curve of Temperature vs . Concentration of Sodium Monoxide, 4 Na20, as Oxygen Schematic of Purification System Pluggings Loop and Plugging Valve 5 > sc I ,* +- . Tab le Oxide of SodZum and Potassium 1 Changes of Physical Properties of Eutectic NaK Caused by Sodium 2 Depletion Appendix Explosives Incident No.
    [Show full text]
  • Existing Passive AMD Treatment Systems Evaluation And
    Existing Passive AMD Treatment Systems Evaluation and Recommendations Carbon Run Site 42 AMD Discharge Passive Treatment System Carbon Run Watershed, Northumberland County Technical Report Prepared by Skelly and Loy, Inc. through the Trout Unlimited AMD Technical Assistance Program December 2013 TABLE OF CONTENTS SECTION TITLE PAGE Background ...................................................................................................................................1 Existing Data .................................................................................................................................1 Existing System Characterization .................................................................................................3 Summary of Site Visit & Investigation .........................................................................................6 Carbon Run Upstream & Downstream of the Site 42 System Outfall .........................................9 Recommendations/Conclusions ..................................................................................................10 Appendices Appendix 1 - Tables and Graphs Appendix 2 - Laboratory Reports for Water Samples Collected June 4, 2013 Appendix 3 - Figures: Treatment System Location Map and Schematic Diagram/Layout - i - Background Shamokin Creek Restoration Alliance (SCRA) requested technical assistance through the Trout Unlimited AMD Technical Assistance Program to evaluate and provide recommendations for an existing AMD passive treatment system within the
    [Show full text]
  • Platinum Metals Review
    UK ISSN 0032-1400 PLATINUM METALS REVIEW A quarterly survey of research on the platinum metals and of developments in their application in industry VOL. 35 JANUARY 1991 NO. 1 Contents Platinum in High Temperature Superconductor Technology 2 Polymetallic Activation 10 Advances in the Study of Platinum Group Elements 16 A Means to a Cleaner Environment 17 Quasicrystals in Rapidly Solidified Alloys 21 Grove Fuel Cell Symposium 21 The Photogeneration of Hydrogen 22 Cleavage in Iridium Crystals 23 Metal-Hydrogen Systems 24 Palladium Membrane Reactors 27 Isomers of Platinum(I1) and Palladium(1I) Complexes 28 Magneto-Optical Recording Materials 31 Osmium and Ruthenium Complexes 31 Abstracts 32 New Patents 47 Communications should be addressed to The Editor, Platinum Metals Review Johnson Matthey Public Limited Company, Hatton Garden, London EClN 8EE Platinum in High Temperature Superconductor Technology LITERATURE SURVEY SUGGESTS POTENTIAL USES By E. F. Maher Johnson Matthey Technology Centre High temperature superconducting oxides are being subjected to intensive investigation, designed to establish the basic mechanisms governing their superconductivity and to enable their electrical and mechanical proper- ties to be optimised and commercial applications developed. Chemical composition, crystallography, microstructure and the concentration of point defects are all factors that have a crucial bearing on superconduc- tivity. Progress in fabrication and thermal processing would elevate these high temperature superconducting oxides from laboratory curiosities to a position where widespread commercial use could be envisaged. Much has already been published on the use of the platinum group metals with the new superconductors. This article has been compiled from a search of the literature and indicates some of the applications that are, or could be, of commercial significance.
    [Show full text]