Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania

Total Page:16

File Type:pdf, Size:1020Kb

Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania In partnership with the following major contributors and Technical Committee Organizations represented: The United States Geological Survey, PA Water Science Center Roger J. Hornberger, P.G., LLC (posthumously) Susquehanna River Basin Commission Dauphin County Conservation District Ian C. Palmer-Researcher PA Department of Environmental Protection-- Bureau of Abandoned Mine Reclamation, Bureau of Deep Mine Safety, & Pottsville District Mining Office MINE WATER RESOURCES OF THE ANTHRACITE REGION OF PENNSYLVANIA Foreword: Dedication to Roger J. Hornberger, P.G. (Robert E. Hughes) PART 1. Mine Water of the Anthracite Region Chapter 1. Introduction to the Anthracite Coal Region (Robert E. Hughes, Michael A. Hewitt, and Roger J. Hornberger, P.G.) Chapter 2. Geology of the Anthracite Coal Region (Robert E. Hughes, Roger J. Hornberger, P.G., Caroline M. Loop, Keith B.C. Brady, P.G., Nathan A. Houtz, P.G.) Chapter 3. Colliery Development in the Anthracite Coal Fields (Robert E. Hughes, Roger J. Hornberger, P.G., David L. Williams, Daniel J. Koury and Keith A. Laslow, P.G.) Chapter 4. A Geospatial Approach to Mapping the Anthracite Coal Fields (Michael A. Hewitt, Robert E. Hughes & Maynard L. (Mike) Dunn, Jr., P.G.) Chapter 5. The Development and Demise of Major Mining in the Northern Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., and Michael A. Hewitt) Chapter 6. The Development of Mining and Mine Drainage Tunnels of the Eastern Middle Anthracite Coal Field (Robert E. Hughes, Michael A. Hewitt, Jerrald Hollowell. P.G., Keith A. Laslow, P.G., and Roger J. Hornberger, P.G.) Chapter 7. Environmental Resource Economics of Mine Water (Robert E. Hughes and Jonathan M. Dietz, Ph.D.) PART 2. The Western Middle Anthracite Coal Field Chapter 1. The Development of Mining, Mine Drainage, Tunnels, & Multi-Colliery Hydrologic Units of the Western Middle Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., Michael A. Hewitt, and Jim Andrews, P.G.) Chapter 2. Mine Drainage Discharges and Boreholes of the Western Middle Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., Mike A. Hewitt, Ian C. Palmer, Jim Andrews, P.G., Daniel J. Koury, and Todd Wood, P.E.) Chapter 3. Volume 1- Mine Pool Hydrology in the Eastern Half of the Western Middle Anthracite Coal Field (Schuylkill County): Colliery, Basin(s), Pool(s), Borehole(s), Barrier(s), Discharge(s), Water-filled Pit(s) (Michael A. Hewitt, Robert E. Hughes, Jim Andrews, P.G., Roger J. Hornberger, P.G.) PART 3. Water Budgets & Groundwater Volumes for Abandoned Underground Mines in the Western Middle Anthracite Coalfield, Schuylkill, Columbia, & Northumberland Counties, PA—Preliminary Estimates with Identification of Data Needs ( Daniel J. Goode, Charles A. Cravotta III, Roger J. Hornberger, P.G., Michael A. Hewitt, Robert E. Hughes, Daniel J. Koury, and Lee W. Eicholtz) PART 4. The Southern Anthracite Coal Field Chapter 1. The Development of Mining, Mine Drainage, Tunnels, Shafts, & Multi-Colliery Hydrologic Units of the Southern Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., Michael A. Hewitt, and Jim Andrews, P.G.,) Chapter 2. Mine Drainage Discharges and Shafts of the Southern Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., Mike A. Hewitt, Ian C. Palmer, Jim Andrews, P.G., Daniel J. Koury, and Todd Wood, P.E.) Chapter 3. Volume 2- Mine Pool Hydrology in the Southern Anthracite Coal Field (Schuylkill and Dauphin County): Colliery, Basin(s), Pool(s), Borehole(s), Barrier(s), Discharge(s), Water-filled Pit(s) (Michael A. Hewitt, Robert E. Hughes, Jim Andrews, P.G., and Roger J. Hornberger, P.G.) Conclusions Appendix A. Figures, Plates, Tables, Graphs, and Maps (Robert E. Hughes, Michael A. Hewitt, and Roger J. Hornberger, P.G.) Appendix B. Notes of Mine Map Evaluation (Roger J. Hornberger, P.G.) Appendix C. EPCAMR Mine Drainage Water Quality Samples Inventory Database (Michael A. Hewitt, Robert E. Hughes, & Ian C. Palmer) Appendix D. Core Log of Southern Anthracite Coal Stratigraphy (William Bragonier and Roger J. Hornberger, P.G.) Appendix E. Western Middle Anthracite Coal Field Borehole Data Charts (1982-2003) (Mike A. Hewitt, Robert E. Hughes, & PA DEP Bureau of Abandoned Mine Reclamation) Appendix F. Southern Anthracite Coal Field Shaft Data Charts (1975-1982) (Mike A. Hewitt, Robert E. Hughes, & PA DEP Bureau of Abandoned Mine Reclamation) Page | 1 Foreword: Dedication to Roger James Hornberger EPCAMR would like to dedicate this series of Reports on the subject of Mine Water Resources in the Anthracite Region of Pennsylvania to Roger J. Hornberger, P.G., who passed away on March 19, 2010 at his home. He was a son of the late James W. and Olive R. Ryland Hornberger. Roger was born on December 9, 1950 in Pottsville, PA and lived at home in Schuylkill Haven. He was a graduate of Schuylkill Haven High School Class of 1968. He was a member of Jerusalem Lutheran Church, Schuylkill Haven, Schuylkill Country Club for many years, Tremont Clubsters and the Schuylkill Haven Golf League. Roger was a member of the Army National Guard for 22 years in Schuylkill County with the Red Horse Division. Surviving are his aunt, Grace Koble, Schuylkill Haven; his uncle, Calvin Hornberger, Cressona; and many cousins. Roger was the epitome of an honorable gentleman who served his nation and this Commonwealth with dignity, a passion for the environment, and honor. He always had a smile on his face, was very soft spoken, yet spoke with zeal and confidence about PA’s environment, particularly related to mining, and went about performing his duties with dedication and in the greatest level of detail. Personally, Roger had been a mentor for me ever since I was an intern with the PA Department of Environmental Protection in the early Page | 2 90s, through the time that I had become the Executive Director of the Eastern PA Coalition for Abandoned Mine Reclamation (EPCAMR), nearly fifteen years ago. He was the one man that took the time to teach myself, and my co-worker, Michael A. Hewitt, as much information that he could about mine water resources in Pennsylvania throughout our young careers until his passing. Mike and I have enjoyed many lunches with Roger and Dan Koury, yet another disciple of Roger’s from the Pottsville District Mining Office, reviews of underground mine maps, meetings with our technical team partners, teaching sessions where we just absorbed every word that came out of his mouth whether it was on a mining tour, at a Conference presentation, or in each other’s Office reviewing and having very complicated discussions on the hydrogeological complexities of Anthracite mining geology and the recent advent of EPCAMR’s use of 3-dimensional mapping technologies to once again daylight the underground mining resources for the public to gain an even better understanding of just what lies beneath our feet. I would call him a genius and someone who, we had the privilege of knowing personally, as a friend and a colleague that allowed us to absorb his institutional knowledge of mining and become very knowledgeable on the subject matter ourselves. Roger did pioneering research into the impacts of abandoned mine drainage on aquatic life and water uses and helped develop groundbreaking policies and technologies to remediate mine drainage and abandoned mines that EPCAMR is just one of many organizations that are following in his footsteps. Roger was the original visionary for the development of this project in partnership with EPCAMR, USGS, the PA DEP, PA DEP BAMR, SRBC, collaborating County Conservation Districts, PA DEP Deep Mine Safety, and other colleagues throughout the Anthracite Region. Roger’s extensive knowledge of PA’s geology, mining history, water quality and geo-chemistry, had by far, made him one of our greatest experts in the field of abandoned mine reclamation, mine drainage abatement, mine drainage remediation, remining, predicting AMD, coal ash reclamation, underground mining, and most importantly, the topic of underground mine pools. EPCAMR would be remiss if we did not highlight some of Roger’s greatest accomplishments to contributing as a public servant within the Commonwealth of Pennsylvania and as a pioneer in the field of mine water resources. Roger’s professional experience first began when he received his Bachelor’s of Science in Landscape Architecture in 1972. He was a Research Assistant, with the Institute for Research on Land and Water Resources at The Pennsylvania State University from September 1974 to August of 1975, where he began early on to compile date on social, economical, and environmental effects of highway construction for use in Page | 3 Environmental Impact Assessments (EIAs) on a multi-disciplinary research team that provided him with the qualities and level of detail that he carried with him for the remainder of his professional career. Roger then became a Project Assistant, in the Department of Landscape Architecture at The Pennsylvania State University from 1973-1976. At this time during his early career, he continued on as a Research Assistant on various projects involving landscape architectural, geological, and ecological aspects of highway construction, surface mining, and other land use developments. Roger then went back to the Institute for Research on Land and Water Resources at The Pennsylvania State University, once again as a Research Assistant from July 1976 to November 1978 working on a project funded by the U.S. Department of the Interior to evaluate stratigraphic and hydrogeologic aspects of variations in abandoned mine drainage (AMD) pollution associated with bituminous coal mines in western Pennsylvania. From November 1978 to May 1979, Roger went on to become a Geologist Trainee, with the Pennsylvania Department of Environmental Resources, in the Bureau of Water Quality Management where he was employed as a Geologist on a team project funded by the U.S.
Recommended publications
  • The Conowingo Tunnel and the Anthracite Mine Flood-Control Project a Historical Perspective on a “Solution” to the Anthracite Mine Drainage Problem
    The Conowingo Tunnel and the Anthracite Mine Flood-Control Project A Historical Perspective on a “Solution” to the Anthracite Mine Drainage Problem Michael C. Korb, P.E. Environmental Program Manager Pennsylvania Department of Environmental Protection Bureau of Abandoned Mine Reclamation (BAMR) Wilkes Barre District Office [email protected] www.depweb.state.pa.us Abstract Fifty-seven years ago, Pennsylvania’s Anthracite Mine Drainage Commission recommended that the Conowingo Tunnel, an expensive, long-range solution to the Anthracite Mine Drainage problem, be “tabled” and that a cheaper, short-range “job- stimulus” project be implemented instead. Today Pennsylvania’s anthracite region has more than 40 major mine water discharges, which have a combined average flow of more than 285,000 gallons per minute (GPM). Two of these average more than 30,000 GPM, 10 more of the discharges are greater than 6,000 GPM, while another 15 average more than 1,000 GPM. Had the Conowingo Tunnel Project been completed, most of this Pennsylvania Anthracite mine water problem would have been Maryland’s mine water problem. Between 1944 and 1954, engineers of the US Bureau of Mines carried out a comprehensive study resulting in more than 25 publications on all aspects of the mine water problem. The engineering study resulted in a recommendation of a fantastic and impressive plan to allow the gravity drainage of most of the Pennsylvania anthracite mines into the estuary of the Susquehanna River, below Conowingo, Maryland, by driving a 137-mile main tunnel with several laterals into the four separate anthracite fields. The $280 million (1954 dollars) scheme was not executed, but rather a $17 million program of pump installations, ditch installation, stream bed improvement and targeted strip-pit backfilling was initiated.
    [Show full text]
  • Middle School - Round 14A
    MIDDLE SCHOOL - ROUND 14A TOSS-UP 1) Earth and Space – Short Answer What is the term for sediment with a particle size less than 2 microns? ANSWER: CLAY BONUS 1) Earth and Space – Multiple Choice Which of the following correctly describes the typical progression from dead organic matter to coal? W) Peat, lignite, bituminous [bih-TOOM-in-us], anthracite [AN-thrah-site] X) Lignite, peat, bituminous, anthracite Y) Lignite, bituminous, peat, anthracite Z) Peat, bituminous, anthracite, lignite ANSWER: W) PEAT, LIGNITE, BITUMINOUS, AND ANTHRACITE ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TOSS-UP 2) Physical Science – Short Answer Chlorine has an atomic mass of 35.45. Given that chlorine has two naturally-occurring isotopes, chlorine-35 and chlorine-37, then, to the nearest whole number, what percentage of chlorine atoms have a mass number of 35.45? ANSWER: ZERO BONUS 2) Physical Science – Short Answer To the nearest gram, what is the mass of two moles of carbon dioxide? ANSWER: 88 Middle School - Round 14A Page 1 TOSS-UP 3) Math – Short Answer What is the slope of a line perpendicular to the line with equation 7x – 4y = –28? ANSWER: –4/7 BONUS 3) Math – Short Answer A fence is built along the perimeter of a 200-foot-by-300-foot rectangular field. Posts are placed at the four corners and every 5 feet thereafter. How many posts are required? ANSWER: 200 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TOSS-UP 4) Life Science – Short Answer In eukaryotes [YOO-care-ee-oats], DNA and histones are organized into what structures? ANSWER: CHROMOSOMES BONUS 4) Life Science – Short Answer What type of microscopy [my-CRAW-scah-pee] involves the use of a laser, photomultiplier detector, and a pinhole that ensures elimination of out-of-plane light emitted by the sample? ANSWER: CONFOCAL Middle School - Round 14A Page 2 TOSS-UP 5) Energy – Short Answer Researchers at the Joint BioEnergy Institute are studying ionic liquids as a solvent to break down cellulose before biofuel production.
    [Show full text]
  • March 8, I 877J
    March 8, I 877J 1VATURE 4or logical Council to the Scottis~ Meteorol~gical Soc_iety, as are "vVe do not deny that an elementary body may in certain necessary for obtaining observations at stations reqmred for the cases give different spectra. The absorption spectrum of iodine, purposes of the Council ; for securing the pmper inspection of for instance, is quite different from its emission spectrum stations the registers from which are required for the general obtained by means of the electric spark. All bodies existing in purposes of the Council ; for t~e needful compilati?n and c_h~ck different allotropic states will give different spectra correspond­ of such registers ; and for meetmg other charges directly ansmg ing to these different allotropic states provided that the allotropic from these services ; or for special researches couducted. by the states still exist at the temperature of incandescence. Society with the approval of the Council ; but that no grants should. be made to ordinary observers, nor for any general pur­ "Oxygen, for instance, would present two different absorption poses of the society which lie beyond the scope of the operations spectra, one belonging to oxygen the other to ozone. But as to be placed under the Council. ozone is destroyed at a high temperature, only one spectrum of 23. We think that the same principle should be applied to all incandescent oxygen can exist. simil!lr local bodies interested in the study of Meteorology ; so " Sulphur in the solid state exists in different allotropic states, that, in fact, no payments should. be made to them except for and some observations lead us to believe that even as a gas it results sought for by the Council.
    [Show full text]
  • 4.3.2 Dam and Levee Failure
    Schuylkill County Hazard Mitigation Plan Month 2019 4.3.2 DAM AND LEVEE FAILURE PROFILE This section discusses both the dam and levee failure hazard in Schuylkill County. Dam Failure A dam is an artificial barrier that has the ability to store water, wastewater, or liquid-borne materials for many reasons (flood control, human water supply, irrigation, livestock water supply, energy generation, containment of mine tailings, recreation, or pollution control). Many dams fulfill a combination of these stated functions (Association of State Dam Safety Officials 2013). Man-made dams can be classified according to the type of construction material used, the methods used in construction, the slope or cross-section of the dam, the way the dam resists the forces of the water pressure behind it, the means used for controlling seepage, and, occasionally, the purpose of the dam. The materials used for construction of dams include earth, rock, tailings from mining or milling, concrete, masonry, steel, timber, miscellaneous materials (plastic or rubber), and any combination of these materials (Association of State Dam Safety Officials 2013). Dams typically fail when spillway capacity is inadequate and excess flow overtops the dam, or when internal erosion (piping) through the dam or foundation occurs. Complete failure occurs if internal erosion or overtopping results in a complete structural breach, releasing a high-velocity wall of debris-filled waters that rush downstream, damaging or destroying anything in its path (Federal Emergency Management Agency [FEMA] 2005). Dam failures can result from one or a combination of the following reasons: . Overtopping caused by floods that exceed the capacity of the dam .
    [Show full text]
  • Anthracite Coal 13
    Rock and Mineral 10-Specimen Kit Companion Book Presented by This mineral kit was also made possible through the generosity of the mining companies who supplied the minerals. If you have any questions or comments about this kit please contact the SME Pittsburgh Section Chair at www.smepittsburgh.org. For more information about mining, visit the following web site: www.smepittsburgh.org BSA’s www.scouting.org - search “Mining in Society” SME’s www.mineralseducationcoalition.org/ Updated July 2016 © SME Pittsburgh Section The SME Pittsburgh Section thanks the companies, mines, and individuals who provided mineral samples and donated time or services that made these mineral kits possible. Alpha Natural Resources, Inc. CONSOL Energy, Inc. Coolspring Stone Supply John T. Boyd Company Morton Salt Murray Energy Corporation Newmont Mining Corporation Reed Gold Mine (State of North Carolina) Steelhead Specialty Minerals United States Gypsum Company US Steel Corporation United Taconite (Cliffs Natural Resources, Inc.) CONTENTS INTRODUCTION 3 MINERAL IDENTIFICATION 5 FUELS 10 Bituminous Coal 12 Anthracite Coal 13 BASE METAL ORES 14 Iron Ore 15 Copper Ore 16 PRECIOUS METALS 17 Gold Ore 18 ROCKS AND INDUSTRIAL MINERALS 19 Gypsum 21 Limestone 22 Marble 23 Salt 24 Zeolite 25 Note: many of the images reproduced here are from Wikipedia which allows non commercial use or from the Minerals Education Coalition web site http://www.mineralseducationcoalition.org/minerals. INTRODUCTION The effect rocks and minerals have on our daily lives is not always obvious, but this book will help explain how essential they really are. If you don’t think you come in contact with minerals every day, think about these facts below and see if you change your mind.
    [Show full text]
  • A History of Lehigh County
    \B7 L5H3 Class _^^ ^ 7 2- CoKiightN". ^A^ COFmiGHT DEPOSIT 1/ I \ HISTORY OF < Lehigh . County . Pennsylvania From The Earliest Settlements to The Present Time including much valuable information FOR THE USE OF THE ScDoolSt Families ana Cibrarics, BY James J. Hauser. "A! Emaus, Pknna., TIMES PURIJSHING CO. 1 901, b^V THF LIBRARY OF CONGRESS, Two Copies Recfived AUG. 31 1901 COPYBIOHT ENTRV ^LASS<^M<Xa No. COPY A/ Entered according to Die Act of Congress, in the year 1901, By JAMES J. HAUSER, In the Office of the Librarian of Congress, at Washington, D. C. All rights reserved. OMISSIONS AND ERRORS. /)n page 20, the Lehigh Valley R. R. omitted. rag6[29, Swamp not Swoiup. Page 28, Milford not Milfod. Page ol, Popnlatioii not Populatirn. Page 39, the Daily Leader of Ailentown, omitted. Page 88, Rev. .Solomon Neitz's E. name omitted. Page i)2,The second column of area of square miles should begin with Hanover township and not with Heidelberg. ^ INTRODUCTION i It is both interesting and instructive to study the history of our fathers, to ^ fully understand through what difficulties, obstacles, toils and trials they went to plant settlements wliich struggled up to a position of wealth and prosperity. y These accounts of our county have been written so as to bring before every youth and citizen of our county, on account of the growth of the population, its resources, the up building of the institution that give character and stability to the county. It has been made as concise as possible and everything which was thought to be of any value to the youth and citizen, has been presented as best as it could be under the circumstances and hope that by perusing its pages, many facts of interest can be gathered that will be of use in future years.
    [Show full text]
  • Abandoned Mine Drainage Workgroup Overview
    ABANDONED MINE DRAINAGE The headwaters of the Schuylkill River are located in the serene mountain valleys of Schuylkill County, Pennsylvania. An area rich in scenic beauty and coal mining history, the Little Schuylkill and Upper Schuylkill Rivers are designated cold-water fisheries, and the Schuylkill main stem is a State Scenic River at the confluence of these two tributary waterways. Abandoned Mine Drainage (AMD) is the primary cause of pollution in the Schuylkill River headwaters and the biggest source of metals downstream. AMD is created deep below the ground in abandoned mines where streams, groundwater, and stormwater fill tunnels that were once kept dry by active pumping operations. Water and oxygen react with lingering iron sulfide (pyrite) producing metal-laden and sometimes highly acidic discharges that exit the tunnels in telltale orange and silver plumes, easily visible in these regional surface waters. Abandoned mine discharge Schuylkill PottsvillPottsville River Watershed NJ S Reading ch uy Pottstown lk ill Trenton Riv e Norri r Norristown r PA e iv Philadelphia R Camden re wa N Wilmington la e DE D W E MD S Abandoned mine tunnel AMD interferes with vegetative growth and reproduction of aquatic animals by armoring the streambed with deposits of iron and other metals. Acidity and metals impair both surface and ground drinking water resources and quickly corrode pipes and industrial mechanisms. Unattractive waterways marred by AMD can hinder tourism and recreational opportunities like fishing, boating, and swimming that attract so many people to visit, vacation, and reside in this region. Passive AMD treatment system AMD treatment is expensive, but so is the economic and environmental damage that results from untreated AMD.
    [Show full text]
  • Coal Characteristics
    CCTR Indiana Center for Coal Technology Research COAL CHARACTERISTICS CCTR Basic Facts File # 8 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: [email protected] October 2008 1 Indiana Center for Coal Technology Research CCTR COAL FORMATION As geological processes apply pressure to peat over time, it is transformed successively into different types of coal Source: Kentucky Geological Survey http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX 2 Indiana Center for Coal Technology Research CCTR COAL ANALYSIS Elemental analysis of coal gives empirical formulas such as: C137H97O9NS for Bituminous Coal C240H90O4NS for high-grade Anthracite Coal is divided into 4 ranks: (1) Anthracite (2) Bituminous (3) Sub-bituminous (4) Lignite Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8 3 Indiana Center for Coal Technology Research CCTR BITUMINOUS COAL Bituminous Coal: Great pressure results in the creation of bituminous, or “soft” coal. This is the type most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal
    [Show full text]
  • Natural Areas Inventory of Bradford County, Pennsylvania 2005
    A NATURAL AREAS INVENTORY OF BRADFORD COUNTY, PENNSYLVANIA 2005 Submitted to: Bradford County Office of Community Planning and Grants Bradford County Planning Commission North Towanda Annex No. 1 RR1 Box 179A Towanda, PA 18848 Prepared by: Pennsylvania Science Office The Nature Conservancy 208 Airport Drive Middletown, Pennsylvania 17057 This project was funded in part by a state grant from the DCNR Wild Resource Conservation Program. Additional support was provided by the Department of Community & Economic Development and the U.S. Fish and Wildlife Service through State Wildlife Grants program grant T-2, administered through the Pennsylvania Game Commission and the Pennsylvania Fish and Boat Commission. ii Site Index by Township SOUTH CREEK # 1 # LITCHFIELD RIDGEBURY 4 WINDHAM # 3 # 7 8 # WELLS ATHENS # 6 WARREN # # 2 # 5 9 10 # # 15 13 11 # 17 SHESHEQUIN # COLUMBIA # # 16 ROME OR WELL SMITHFI ELD ULSTER # SPRINGFIELD 12 # PIKE 19 18 14 # 29 # # 20 WYSOX 30 WEST NORTH # # 21 27 STANDING BURLINGTON BURLINGTON TOWANDA # # 22 TROY STONE # 25 28 STEVENS # ARMENIA HERRICK # 24 # # TOWANDA 34 26 # 31 # GRANVI LLE 48 # # ASYLUM 33 FRANKLIN 35 # 32 55 # # 56 MONROE WYALUSING 23 57 53 TUSCARORA 61 59 58 # LEROY # 37 # # # # 43 36 71 66 # # # # # # # # # 44 67 54 49 # # 52 # # # # 60 62 CANTON OVERTON 39 69 # # # 42 TERRY # # # # 68 41 40 72 63 # ALBANY 47 # # # 45 # 50 46 WILMOT 70 65 # 64 # 51 Site Index by USGS Quadrangle # 1 # 4 GILLETT # 3 # LITCHFIELD 8 # MILLERTON 7 BENTLEY CREEK # 6 # FRIENDSVILLE # 2 SAYRE # WINDHAM 5 LITTLE MEADOWS 9
    [Show full text]
  • Coal Ash Beneficial Use in Mine Reclamation and Mine Drainage Remediation in Pennsylvania
    Coal Ash Beneficial Use in Mine Reclamation and Mine Drainage Remediation in Pennsylvania FORWARD ................................................................................................................................ i PREFACE................................................................................................................................... ii Letters of endorsement from IMCC, ACAA and environmental groups Table of Contents......................................................................................................................... xix List of Figures........................................................................................................................... xxvii List of Tables ............................................................................................................................xxxvi List of Acronyms ...................................................................................................................... xxxx Chapter 1. Overview: Coal Ash Beneficial Use and Mine Land Reclamation................... 1 1.1 INTRODUCTION—PENNSYLVANIA’S ABANDONED MINE LAND PROBLEM .... 1 1.2 FLUIDIZED BED COMBUSTION (FBC) POWER PLANTS........................................... 2 1.2.1 Creation of the FBC Power-Generating Industry ................................................... 2 1.2.2 Operation of FBC Power Plants.............................................................................. 3 1.2.3 Distribution of FBC Plants in Pennsylvania ..........................................................
    [Show full text]
  • 2021 PA Fishing Summary
    2021 Pennsylvania Fishing Summary/ Boating Handbook MENTORED YOUTH TROUT DAY March 27 (statewide) FISH-FOR-FREE DAYS May 30 and July 4 Multi-Year Fishing Licenses–page 5 TROUT OPENER April 3 Statewide Pennsylvania Fishing Summary/Boating Handbookwww.fishandboat.com www.fishandboat.com 1 2 www.fishandboat.com Pennsylvania Fishing Summary/Boating Handbook PFBC LOCATIONS/TABLE OF CONTENTS For More Information: The mission of the Pennsylvania State Headquarters Centre Region Office Fishing Licenses: Fish and Boat Commission (PFBC) 1601 Elmerton Avenue 595 East Rolling Ridge Drive Phone: (877) 707-4085 is to protect, conserve, and enhance P.O. Box 67000 Bellefonte, PA 16823 Boat Registration/Titling: the Commonwealth’s aquatic Harrisburg, PA 17106-7000 Lobby Phone: (814) 359-5124 resources, and provide fishing and Phone: (866) 262-8734 Phone: (717) 705-7800 Fisheries Admin. Phone: boating opportunities. Hours: 8:00 a.m. – 4:00 p.m. (814) 359-5110 Publications: Monday through Friday Hours: 8:00 a.m. – 4:00 p.m. Phone: (717) 705-7835 Monday through Friday Contents Boating Safety Regulations by Location Education Courses The PFBC Website: (All fish species) Phone: (888) 723-4741 www.fishandboat.com www.fishandboat.com/socialmedia Inland Waters............................................ 10 Pymatuning Reservoir............................... 12 Region Offices: Law Enforcement/Education Conowingo Reservoir................................ 12 Contact Law Enforcement for information about regulations and fishing and boating Delaware River and Estuary......................
    [Show full text]
  • Brook Trout Outcome Management Strategy
    Brook Trout Outcome Management Strategy Introduction Brook Trout symbolize healthy waters because they rely on clean, cold stream habitat and are sensitive to rising stream temperatures, thereby serving as an aquatic version of a “canary in a coal mine”. Brook Trout are also highly prized by recreational anglers and have been designated as the state fish in many eastern states. They are an essential part of the headwater stream ecosystem, an important part of the upper watershed’s natural heritage and a valuable recreational resource. Land trusts in West Virginia, New York and Virginia have found that the possibility of restoring Brook Trout to local streams can act as a motivator for private landowners to take conservation actions, whether it is installing a fence that will exclude livestock from a waterway or putting their land under a conservation easement. The decline of Brook Trout serves as a warning about the health of local waterways and the lands draining to them. More than a century of declining Brook Trout populations has led to lost economic revenue and recreational fishing opportunities in the Bay’s headwaters. Chesapeake Bay Management Strategy: Brook Trout March 16, 2015 - DRAFT I. Goal, Outcome and Baseline This management strategy identifies approaches for achieving the following goal and outcome: Vital Habitats Goal: Restore, enhance and protect a network of land and water habitats to support fish and wildlife, and to afford other public benefits, including water quality, recreational uses and scenic value across the watershed. Brook Trout Outcome: Restore and sustain naturally reproducing Brook Trout populations in Chesapeake Bay headwater streams, with an eight percent increase in occupied habitat by 2025.
    [Show full text]