March 8, I 877J

Total Page:16

File Type:pdf, Size:1020Kb

March 8, I 877J March 8, I 877J 1VATURE 4or logical Council to the Scottis~ Meteorol~gical Soc_iety, as are "vVe do not deny that an elementary body may in certain necessary for obtaining observations at stations reqmred for the cases give different spectra. The absorption spectrum of iodine, purposes of the Council ; for securing the pmper inspection of for instance, is quite different from its emission spectrum stations the registers from which are required for the general obtained by means of the electric spark. All bodies existing in purposes of the Council ; for t~e needful compilati?n and c_h~ck different allotropic states will give different spectra correspond­ of such registers ; and for meetmg other charges directly ansmg ing to these different allotropic states provided that the allotropic from these services ; or for special researches couducted. by the states still exist at the temperature of incandescence. Society with the approval of the Council ; but that no grants should. be made to ordinary observers, nor for any general pur­ "Oxygen, for instance, would present two different absorption poses of the society which lie beyond the scope of the operations spectra, one belonging to oxygen the other to ozone. But as to be placed under the Council. ozone is destroyed at a high temperature, only one spectrum of 23. We think that the same principle should be applied to all incandescent oxygen can exist. simil!lr local bodies interested in the study of Meteorology ; so " Sulphur in the solid state exists in different allotropic states, that, in fact, no payments should. be made to them except for and some observations lead us to believe that even as a gas it results sought for by the Council. may exist in different states. Supposing this to be true, sulphur 24. vVe have indicated above in very general t~rms_ the _func­ will give us several absorption spectra, while the possibility of a tions of the proposed Council, and we do not tlnnk It desirable single or several emission spectra depends on the question to fetter their discretion by further details. We append, how­ whether the more complicated allotropic states support the ever, to this report a paper by a member of the present Com­ temperature of incandescence. mittee of the Royal Society, who is also a mem?er of our Con~­ " It is evident that the above cases do not form an exception mittee, stating what, according to present expenence, are, 111 lns to the general law which we have given, that an elementary opinion, likely to be their duties. body can only give one spectrum. In fact, if we suppose that 25. The later stages of the inquiry in relation to the transfer the allotropic state is due to molecular constitution, it will possess of oceanic meteorology to the Admiralty have raised some from a spectroscopic point of view, all properties of a compound serious questions of expense, which the Government will, body, and in consequence it will be decomposed in the same doubtless, require time to consider. We think it only just to the manner by the disruptive discharge of electricity." Committee which has heretofore had the administration of the The paper then goes on to discuss the <lifference which is annual grant to report our opinion that very good and valuable noticed in the electric spark, between the aureole and the spark work is being done by it, and that if funds were provided to itself. Messrs. Angstrom ancl Thalen sum up what they have admit of the more responsible and more extended action of the mid on the subject in the following words :- Council, as suggested in paragraphs 9 and 22 o'. our Report, and I. There are two kinds of electric discharge, one of tension, if, at least provisionally, some assistance were given to the Scotch which takes place by explosion, or disruptively, the other of Meteorological Society, the more immediate objects. referred. to quantity, which takes place by conduction, or continuously. our Committee would be met, and there need be no 111terruption 2. By the disruptive discharge which al ways takes plac wh~n of the Committee's operations pending the delay, if _any; which the tension is suffi2iently g-reat, the body is, as a rule, torn 7rnto its may occur, whilst the feasibility of transferring oC:eamc meteoro­ smallest particles, and thus decomposed into its elements if the logy to the Admiralty is being maturely considered by her body is compound. The phenomenon of incandescence which Majesty's Government. accompanies both the mechanical disruption and chemical de­ It is important in connection with this part of ~he subject to composition, cannot be considered as a consequence of the aug­ bear in mind the strong claims which the Supermtendent and mentation of temperature, bnt we ought rather to say that the other members of the existing staff have to continued employ­ high temperature is an effect of the mechanical a.nd chemical ment. force which disintegrated the body. In addition to the decom­ 26. In recommending the above changes _we feel bound_ to position produced directly by the disruptive discharge, we may express our sense of the great value of the chsmterested services have chemical actions, which are, however, of a secondary nature. which at the cost of much time and labour have been rendered 3. When the electricity is ~onducted by conclt'.ction w~ must during-so many years by the Committee appointed by the Royal distinguish between two actions. vVe have actions which are Society. entirely due to heat, and which belong to the conductors them­ 27. vVe are aware that what we are proposing is still tentative selves. They increase with the square of the intensity of the current. only, and we recommend, in conclusiou, that there shall be a We have, secondly, actions which make themselves perceptible further inquiry and report at the end of (say) five years. at the surface of bodies, and which are proportional to the in­ tensity of the current. These latter actions are confined in elementary bodies to a variation in temperature, but if the body RESEARCHES ON THE SPECTRA OF is compound they may consist in chemical effects, whic~ we call METALLOIDSI electrolytic actions. These two phenomena, the Peltier effect THIS paper was published by Mr. ~halen_ after ~fr. and the phenomenon of electrolysis, must be considered as dif­ Angstrom's death. Mr. Thalen states, 111 the mtroduct101;, ferent manifestations of the same force ; one or other of the that only the first sheet was printed during Mr. Angstroms actions takes place according as the body is simple o: compoun~. life who in the remainder would have ltked to alter some These laws, which are demonstrated to hold for soltd and hqmd pa:sages and add others. Yet we take it tl:at such alterations only bodies, must also be applied to gaseous bodies, wh_ere we must would have referred to matters of detail, and that as far as therefore expect electrolytic actions as well as che1mcal ones of a ihe general conclusions are concen_ied the paper re_rresen~s fairl.i;­ secondary nature. Mr. Angstrom's opinion on the important questions dt~cussea Our authors then go on to discuss tl1e spectra of carbon and therein. Mr. Thalen has mad.e the measurements, wlule the their compounds. They begin again with a historical statement experiments were made by him in conjunction with Mr, of the work done in this respect, and as this p~rt of the paper Angstrom. does not contain anything new to those who are 111terested 111 the After a few historical remarks the authors gt ve the followmg matter we pass to the question which they propose to solve : judgment on the question of double spectra :- . "How are we to explain all these different spectra of carbon "We are far from denying that the Imes of an mcandescent compounds?" They draw attention to the fact that all these gas may come out in greater :m!1'ber as th_e temperature, or per­ spectra have a common_ characte:istic, as they _consist of bands haps only the quantity of radiating matter m~re~ses, mthat som_e which can be resolved mto fine Imes. There·is, however, one rays may increase much quicker th~n others :1: mtens,ty. B~t 1t spectrum which must be attributed to carbon, while the authors is certain that the assertion of vanous ph~s1c1sts that the Imes attribute all other spectra to carbon compounds. This spectrnm originally seen may disappear altoge~her, and that_ in this_ way is a line spectrum. It is obtained from carbon poles by means the spectrum may change c011:1pletely_ 111_ appearance 1s as u11;hkely of a powerful jar. I from a theoretical point of view as 1t 1s contrary to expenence. If we cllow a spark to pass between carbon electrodes, the If such properties were real all spectroscopic researches wou_ld lines are not seen in the middle of the field, but only close to be rendered impossible as each element could play as far as its the poles similar to the metallic lines. If the discharge pass spectrum is concerned the parts of a Proteus. through some carbon comp.,und, one obtains not only these car­ bon lines, but also thos~ · of oxygen, hydrogen, or nitrogen, that I Abstract from a paper in the " Nova Acta Regia! Societatis Scienliarum 1 Upsaliensis," vo1. ix., 1875 1 by A. J. Angstrom and T. R. Tlialen. It is the spectrum marked by -\V8.tts No. IV,-A. S. © 1877 Nature Publishing Group 402 NATURE [March 8, 1877 is, all lines belonging to the elements entering into the carbon spectrum of nitrogen.
Recommended publications
  • Natural Areas Inventory of Bradford County, Pennsylvania 2005
    A NATURAL AREAS INVENTORY OF BRADFORD COUNTY, PENNSYLVANIA 2005 Submitted to: Bradford County Office of Community Planning and Grants Bradford County Planning Commission North Towanda Annex No. 1 RR1 Box 179A Towanda, PA 18848 Prepared by: Pennsylvania Science Office The Nature Conservancy 208 Airport Drive Middletown, Pennsylvania 17057 This project was funded in part by a state grant from the DCNR Wild Resource Conservation Program. Additional support was provided by the Department of Community & Economic Development and the U.S. Fish and Wildlife Service through State Wildlife Grants program grant T-2, administered through the Pennsylvania Game Commission and the Pennsylvania Fish and Boat Commission. ii Site Index by Township SOUTH CREEK # 1 # LITCHFIELD RIDGEBURY 4 WINDHAM # 3 # 7 8 # WELLS ATHENS # 6 WARREN # # 2 # 5 9 10 # # 15 13 11 # 17 SHESHEQUIN # COLUMBIA # # 16 ROME OR WELL SMITHFI ELD ULSTER # SPRINGFIELD 12 # PIKE 19 18 14 # 29 # # 20 WYSOX 30 WEST NORTH # # 21 27 STANDING BURLINGTON BURLINGTON TOWANDA # # 22 TROY STONE # 25 28 STEVENS # ARMENIA HERRICK # 24 # # TOWANDA 34 26 # 31 # GRANVI LLE 48 # # ASYLUM 33 FRANKLIN 35 # 32 55 # # 56 MONROE WYALUSING 23 57 53 TUSCARORA 61 59 58 # LEROY # 37 # # # # 43 36 71 66 # # # # # # # # # 44 67 54 49 # # 52 # # # # 60 62 CANTON OVERTON 39 69 # # # 42 TERRY # # # # 68 41 40 72 63 # ALBANY 47 # # # 45 # 50 46 WILMOT 70 65 # 64 # 51 Site Index by USGS Quadrangle # 1 # 4 GILLETT # 3 # LITCHFIELD 8 # MILLERTON 7 BENTLEY CREEK # 6 # FRIENDSVILLE # 2 SAYRE # WINDHAM 5 LITTLE MEADOWS 9
    [Show full text]
  • Acidification in the US Southeast
    fmars-07-00548 July 8, 2020 Time: 19:8 # 1 REVIEW published: 10 July 2020 doi: 10.3389/fmars.2020.00548 Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network Emily R. Hall1*, Leslie Wickes2, Louis E. Burnett3, Geoffrey I. Scott4, Debra Hernandez5, Kimberly K. Yates6, Leticia Barbero7, Janet J. Reimer8, Mohammed Baalousha4, Jennifer Mintz9, Wei-Jun Cai8, J. Kevin Craig10, M. Richard DeVoe11, William S. Fisher12, Terri K. Hathaway13, Elizabeth B. Jewett9, Zackary Johnson14, Paula Keener15, Rua S. Mordecai16, Scott Noakes17, Charlie Phillips18, Paul A. Sandifer19, Astrid Schnetzer20 and Jay Styron21 1 Mote Marine Laboratory, Sarasota, FL, United States, 2 Thrive Blue Consulting, Charleston, SC, United States, 3 Grice Marine Laboratory, College of Charleston, Charleston, SC, United States, 4 Arnold School of Public Health, University of South Carolina, Columbia, SC, United States, 5 Southeastern Coastal Ocean Observing and Research Regional Edited by: Association, Charleston, SC, United States, 6 US Geological Survey, St. Petersburg, FL, United States, 7 National Oceanic Christopher Edward Cornwall, and Atmospheric Administration, Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States, 8 College Victoria University of Wellington, of Earth, Ocean and Environment, University of Delaware, Newark, DE, United States, 9 National Oceanic and Atmospheric New Zealand Administration, Ocean Acidification Program, Silver Spring, MD, United States,
    [Show full text]
  • Wild Trout Waters (Natural Reproduction) - September 2021
    Pennsylvania Wild Trout Waters (Natural Reproduction) - September 2021 Length County of Mouth Water Trib To Wild Trout Limits Lower Limit Lat Lower Limit Lon (miles) Adams Birch Run Long Pine Run Reservoir Headwaters to Mouth 39.950279 -77.444443 3.82 Adams Hayes Run East Branch Antietam Creek Headwaters to Mouth 39.815808 -77.458243 2.18 Adams Hosack Run Conococheague Creek Headwaters to Mouth 39.914780 -77.467522 2.90 Adams Knob Run Birch Run Headwaters to Mouth 39.950970 -77.444183 1.82 Adams Latimore Creek Bermudian Creek Headwaters to Mouth 40.003613 -77.061386 7.00 Adams Little Marsh Creek Marsh Creek Headwaters dnst to T-315 39.842220 -77.372780 3.80 Adams Long Pine Run Conococheague Creek Headwaters to Long Pine Run Reservoir 39.942501 -77.455559 2.13 Adams Marsh Creek Out of State Headwaters dnst to SR0030 39.853802 -77.288300 11.12 Adams McDowells Run Carbaugh Run Headwaters to Mouth 39.876610 -77.448990 1.03 Adams Opossum Creek Conewago Creek Headwaters to Mouth 39.931667 -77.185555 12.10 Adams Stillhouse Run Conococheague Creek Headwaters to Mouth 39.915470 -77.467575 1.28 Adams Toms Creek Out of State Headwaters to Miney Branch 39.736532 -77.369041 8.95 Adams UNT to Little Marsh Creek (RM 4.86) Little Marsh Creek Headwaters to Orchard Road 39.876125 -77.384117 1.31 Allegheny Allegheny River Ohio River Headwater dnst to conf Reed Run 41.751389 -78.107498 21.80 Allegheny Kilbuck Run Ohio River Headwaters to UNT at RM 1.25 40.516388 -80.131668 5.17 Allegheny Little Sewickley Creek Ohio River Headwaters to Mouth 40.554253 -80.206802
    [Show full text]
  • Information Sheet
    INFORMATION SHEET Proposed Total Maximum Daily Load (TMDL) for the Shamokin Creek Watershed, Northumberland, Montour, and Columbia Counties, Pennsylvania What is being proposed? A TMDL plan to improve the quality of water in Shamokin Creek and its tributaries, including North Branch Shamokin Creek, Quaker Run, Coal Run, Carbon Run, Locust Creek, and Buck Run. Who is proposing the plan? To whom and why? The Susquehanna River Basin Commission (SRBC), in cooperation with the Pottsville District Mining Office, is proposing to submit the plan to the Pennsylvania Department of Environmental Protection (Pa. DEP) and U.S. Environmental Protection Agency (U.S. EPA) for review and approval as required by federal regulation. In 1995, U.S. EPA was sued for not developing TMDLs when Pennsylvania failed to do so. Pa. DEP has entered into an agreement with U.S. EPA to develop TMDLs for certain specified waters over the next several years. In order to assist Pennsylvania in the development of TMDLs, the SRBC entered into contract with Pa. DEP to develop several TMDLs within the Susquehanna River Basin. This TMDL has been developed in compliance with the state/U.S. EPA agreement. What is a TMDL? A Total Maximum Daily Load (TMDL) sets a ceiling on the pollutant loads that can enter a water body so the water body will meet water quality standards. The Clean Water Act requires states to list all waters that do not meet their water quality standards even after pollution controls required by law are in place. For these waters, the state must calculate how much of a substance can be put in the water without violating the standard and distribute that quantity to all the sources of the pollutant on that water body.
    [Show full text]
  • Pennsylvania Northumberland Comprehensive Plan
    COALTOWNSHIP NORTHUMBERLANDCOUNTY PENNSYLVANIA COMPREHENSIVEPLAN AUGUST, 2003 Table of Contents I Introduction I1 Background A. Regional Influence B. Topography C. Local History D. Existing Land Use E. Community Facilities & Services F. Traffic Circulation 111 Statistical Analysis A. Population & Race B. Population in Adjacent Municipalities C. Persons by Age D. Gender E. Education F. Employment & Labor Force G. Housing Units IV Goals & Objectives IV LandUse IV Housing IV Economic Development IV Transportation IV Community Facilities I. Introduction This document presents Coal Township's Comprehensive Plan. It was prepared in accordance with the Pennsylvania Municipalities Planning Code (Act 170 of 1988). By adoption of this Comprehensive Plan by Coal Township's Board of Commissioners, it becomes the official statement prepared by the Planning Commission setting forth Coal Townships policies concerning desirable physical development and redevelopment of the community. The Coal Township Comprehensive Plan is not intended to be a detailed blueprint for community building. Rather the document is a general guide for land use to encourage municipal action to utilize the appropriate use or development of all land in a manner which will promote public health, safety, desirability and efficiency. The Comprehensive Plan supports Coal Township's efforts to foster community and economic growth. The fundamental purposes that the Coal Township Comprehensive Plan is intended to achieve are as follows: 1. To improve the physical environment of the Township as a setting for human activities - to make it more functional, beautiful, interesting, and efficient. This purpose is in accord with the broad mandate of the Township's Planning Commission in agreement with the Pennsylvania Municipalities Planning Code.
    [Show full text]
  • Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania
    Mine Water Resources of the Anthracite Coal Fields of Eastern Pennsylvania In partnership with the following major contributors and Technical Committee Organizations represented: The United States Geological Survey, PA Water Science Center Roger J. Hornberger, P.G., LLC (posthumously) Susquehanna River Basin Commission Dauphin County Conservation District Ian C. Palmer-Researcher PA Department of Environmental Protection-- Bureau of Abandoned Mine Reclamation, Bureau of Deep Mine Safety, & Pottsville District Mining Office MINE WATER RESOURCES OF THE ANTHRACITE REGION OF PENNSYLVANIA Foreword: Dedication to Roger J. Hornberger, P.G. (Robert E. Hughes) PART 1. Mine Water of the Anthracite Region Chapter 1. Introduction to the Anthracite Coal Region (Robert E. Hughes, Michael A. Hewitt, and Roger J. Hornberger, P.G.) Chapter 2. Geology of the Anthracite Coal Region (Robert E. Hughes, Roger J. Hornberger, P.G., Caroline M. Loop, Keith B.C. Brady, P.G., Nathan A. Houtz, P.G.) Chapter 3. Colliery Development in the Anthracite Coal Fields (Robert E. Hughes, Roger J. Hornberger, P.G., David L. Williams, Daniel J. Koury and Keith A. Laslow, P.G.) Chapter 4. A Geospatial Approach to Mapping the Anthracite Coal Fields (Michael A. Hewitt, Robert E. Hughes & Maynard L. (Mike) Dunn, Jr., P.G.) Chapter 5. The Development and Demise of Major Mining in the Northern Anthracite Coal Field (Robert E. Hughes, Roger J. Hornberger, P.G., and Michael A. Hewitt) Chapter 6. The Development of Mining and Mine Drainage Tunnels of the Eastern Middle Anthracite Coal Field (Robert E. Hughes, Michael A. Hewitt, Jerrald Hollowell. P.G., Keith A. Laslow, P.G., and Roger J.
    [Show full text]
  • Existing Passive AMD Treatment Systems Evaluation And
    Existing Passive AMD Treatment Systems Evaluation and Recommendations Carbon Run Site 42 AMD Discharge Passive Treatment System Carbon Run Watershed, Northumberland County Technical Report Prepared by Skelly and Loy, Inc. through the Trout Unlimited AMD Technical Assistance Program December 2013 TABLE OF CONTENTS SECTION TITLE PAGE Background ...................................................................................................................................1 Existing Data .................................................................................................................................1 Existing System Characterization .................................................................................................3 Summary of Site Visit & Investigation .........................................................................................6 Carbon Run Upstream & Downstream of the Site 42 System Outfall .........................................9 Recommendations/Conclusions ..................................................................................................10 Appendices Appendix 1 - Tables and Graphs Appendix 2 - Laboratory Reports for Water Samples Collected June 4, 2013 Appendix 3 - Figures: Treatment System Location Map and Schematic Diagram/Layout - i - Background Shamokin Creek Restoration Alliance (SCRA) requested technical assistance through the Trout Unlimited AMD Technical Assistance Program to evaluate and provide recommendations for an existing AMD passive treatment system within the
    [Show full text]
  • GAG Guidance Document 001
    Global Advisory Group GAG - Guidance GAG Guidance Document 001 Terms and Definitions Edition 2009-01 March 2009 Global Advisory Group GAG – Guidance "Terms and Definitions" – 2009-01 Contents Introduction..................................................................................................................................................3 1. Scope .................................................................................................................................................3 2. Aluminium products.........................................................................................................................4 2.1. Aluminium ...........................................................................................................................................4 2.2. Alloys, alloying elements and impurities.............................................................................................4 2.3. Materials and products .......................................................................................................................5 2.4. Unwrought products, excepting castings............................................................................................6 2.5. Castings..............................................................................................................................................6 2.6. Sheet and plate...................................................................................................................................7 2.7. Foil ......................................................................................................................................................9
    [Show full text]
  • Research Department
    Ontario Hydro AIRBORNE CARBON-14 ACTIVITIES IN THE WEST VAULT OF THE UNIT 1 REACTOR AT PICKERING NGS Report No 85-248-K K.E. Curtis Chemist - Analytical Methods Analytical Services Section Chemical Research Department RESEARCH 91602 new 82-10 CO At f i ' M f '• i '- K V '- O V i Ontario hydro research division AIRBORNE CARBON-14 ACTIVITIES IN THE WEST VAULT OF THE UNIT 1 REACTOR AT PICKERING HGS Report No 85-248-K K.E. Curtis Chemist - Analytical Methods Analytical Services Section Chemical Research Department ABSTRACT A large sampling and analysis program has been carried out to measure the airborne carbon~14 activities in the west vault during shock heating of four fuel channels in Pickering NGS Unit 1. Particulate carbon-14 activities varied from 0.02 to 2.9 pCi/m , depending on the sampling location and the fuel channel undergoing shock heating. By contrast, the gaseous carbon-14 activities were relatively constant for all samples, ranging from 1.6 to 5.2 yCi/m. Greater than 98% of this activity was found to be inorganic, probably from ^O^. Tritium was also found in the gaseous samples at an average concentra- tion about seven times higher than the carbon-14 activity. October 28, 1985 740631-508-092 833.74-X837.29 85-248-K 91602 new 82-10 Ontario hydro research division EXECUTIVE SUMMARY AIRBORNE CARBON-14 ACTIVITIES IN THE WEST VAULT OF THE UNIT 1 REACTOR AT PICKERING NGS K.E. Curtis Chemist - Analytical Methods Analytical Services Section Chemical Research Department A large sampling program has been carried out in the west vault of Pickering NGS Unit 1 to collect airborne samples during the shock heating of four fuel channels.
    [Show full text]
  • Shamokin Creek Watershed TMDL
    Shamokin Creek Watershed TMDL Prepared for: Bureau of Watershed Conservation Pennsylvania Department of Environmental Protection Prepared by: Pottsville District Mining Office Bureau of District Mining Operations, Pa. DEP In Cooperation with The Susquehanna River Basin Commission March 2, 2001 TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ 1 INTRODUCTION........................................................................................................................... 2 DIRECTIONS TO THE SHAMOKIN CREEK WATERSHED.................................................... 3 SEGMENTS ADDRESSED IN THIS TMDL................................................................................ 3 WATERSHED BACKGROUND................................................................................................... 4 TMDL ENDPOINTS ...................................................................................................................... 7 COMPUTATIONAL METHODOLOGY ...................................................................................... 8 HYDROLOGY................................................................................................................................ 9 TMDLS BY SEGMENT...............................................................................................................10 Mid Valley Discharge ..............................................................................................................
    [Show full text]
  • 1 of 13 Us Eastern PA Coalition for Abandoned Mine Reclamation
    us Eastern PA Coalition for Abandoned Mine Reclamation Robert E. Hughes EPCAMR Executive Director 101 South Main Street Ashley, PA 18706 Phone: (570) 371-3523 [email protected] Website: www.epcamr.org October 11, 2016 Senate Environmental Resources & Energy Committee Senator Gene Yaw, Chairman Room 362 Capital Building, 23rd Senatorial District Senate Box 203023 Harrisburg, PA 17120-3023 RE: Waste Coal Facilities Hearing Dear Senator Yaw, Chairman of the Senate Environmental Resources & Energy Committee, and fellow members of the distinguished Committee: On behalf of the Eastern PA Coalition for Abandoned Mine Reclamation (EPCAMR), a 20 year old, regional, non-profit environmental organization located in Ashley, PA dedicated to the reclamation of abandoned mine lands, restoration of watersheds impacted by abandoned mine drainage (AMD), and economic redevelopment of abandoned mine lands impacted by past mining practices throughout the Northern Anthracite Coal Fields and the Bituminous Coal Fields of Northcentral PA, I would like to offer testimony on the importance and necessity PA’s waste coal co-generation facilities have on our past mining landscapes, watersheds, and local economies. EPCAMR is a long-time affiliate member of the ARIPPA trade association and has been an active for two decades, since our inception. ARIPPA and Anthracite Region waste coal plants and partners have been providing my organization with opportunities to partner with individual member plants in the Anthracite Region as well as in the Bituminous Region of PA
    [Show full text]
  • Flood Insurance Study
    FLOOD INSURANCE STUDY VOLUME 2 OF 2 NORTHUMBERLAND COUNTY, PENNSYLVANIA (ALL JURISDICTIONS) COMMUNITY COMMUNITY COMMUNITY COMMUNITY NAME NUMBER NAME NUMBER COAL, TOWNSHIP OF 421936 POINT, TOWNSHIP OF 421026 DELAWARE, TOWNSHIP OF 421010 RALPHO, TOWNSHIP OF 421027 EAST CAMERON, TOWNSHIP OF 421937 RIVERSIDE, BOROUGH OF 420740 EAST CHILLISQUAQUE, TOWNSHIP OF 422599 ROCKEFELLER, TOWNSHIP OF 421152 HERNDON, BOROUGH OF 420735 RUSH, TOWNSHIP OF 421943 JACKSON, TOWNSHIP OF 421938 SHAMOKIN, CITY OF 420741 JORDAN, TOWNSHIP OF 421939 SHAMOKIN, TOWNSHIP OF 421159 KULPMONT, BOROUGH OF 420736 SNYDERTOWN, BOROUGH OF 420742 LEWIS, TOWNSHIP OF 421940 SUNBURY, CITY OF 420743 LITTLE MAHANOY, TOWNSHIP OF 421015 TURBOT, TOWNSHIP OF 420744 LOWER AUGUSTA, TOWNSHIP OF 421017 *TURBOTVILLE, BOROUGH OF 422721 LOWER MAHANOY, TOWNSHIP OF 421941 UPPER AUGUSTA, TOWNSHIP OF 420745 *MARION HEIGHTS, BOROUGH OF 422720 UPPER MAHANOY, TOWNSHIP OF 421944 MC EWENSVILLE, BOROUGH OF 421935 WASHINGTON, TOWNSHIP OF 421945 MILTON, BOROUGH OF 425384 WATSONTOWN, BOROUGH OF 420746 MOUNT CARMEL, BOROUGH OF 420738 WEST CAMERON, TOWNSHIP OF 421946 MOUNT CARMEL, TOWNSHIP OF 421942 WEST CHILLISQUAQUE, TOWNSHIP OF 421033 NORTHUMBERLAND, BOROUGH OF 420739 ZERBE, TOWNSHIP OF 421947 *Non Flood Prone Northumberland County EFFECTIVE DATE: JULY 16, 2008 Federal Emergency Management Agency FLOOD INSURANCE STUDY NUMBER 42097CV002A NOTICE TO FLOOD INSURANCE STUDY USERS Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study may not contain all data available within the repository. It is advisable to contact the community repository for any additional data. Selected Flood Insurance Rate Map panels for the community contain information that was previously shown separately on the corresponding Flood Boundary and Floodway Map panels (e.g., floodways, cross sections).
    [Show full text]