Jupiter's Trojan Asteroids

Total Page:16

File Type:pdf, Size:1020Kb

Jupiter's Trojan Asteroids A Digital Supplement to Astronomy Insights Astronomy Magazine © 2018 Kalmbach Media Comets & Asteroids More Alike than Different? October 2018 • Astronomy.com How are comets and asteroids related? The solar system is a complex place. Aside from the Sun and major planets, it is filled with hundreds of thousands of smaller bits of debris left from the solar system’s formation some 4.6 billion years ago. In the 19th cen- heating up and putting on a show with their tury, astronomers were concerned primarily spectacular tails. with discovery. Whether moons, comets, or Asteroids, on the other hand, are rocky asteroids, finding and cataloging objects bodies — micro-planets, if you will — most was the primary means of employment. And of which reside in the asteroid belt, which it is still an important part of the scientific lies between Mars and Jupiter. Asteroids process because many unusual and import- show no traits similar to comets, such as the ant objects certainly remain to be found. outgassing of volatiles that form pretty tails But in recent times, planetary scientists in the sky. Moreover, their orbits are dis- have turned increasingly to interpreting tinctly different from those of comets. what they have found. Analyzing objects But a view developed during the past with a growing number of techniques has 25 years suggests comets and asteroids, allowed astronomers to paint a sharper pic- although distinct types of bodies, are more ture of the solar system’s formation and the alike than astronomers originally thought. RUBBER DUCKY. Comet 67P/ relationships between objects in it. Trillions of comets probably exist in our solar Comets with Churyumov-Gerasimenko 1 For many years, astronomers kept com- system; the long-period ones exist in a vast hyperbolic or para- is seen close-up in this ets and minor planets, or reservoir called the Oort Cloud, named after bolic orbits appear image taken January 31, SPACE SPUD. This set of asteroids, in separate Dutch astronomer Jan Oort, who hypothe- only once, after which 2015, by the Rosetta nine color images of the categories. After all, com- sized its existence in the 1950s. they are flung outside spacecraft. Comets and asteroid 243 Ida reveals ets are frozen balls of ice Periodically, a gravitational kick from a the solar system. asteroids are leftover debris the potato-shaped structure and gas that live in the passing star or a disturbance in the Oort Lastly, main-belt com- from the solar system’s of this space rock, which initial formation 4.6 billion solar system’s distant Cloud sends long-period comets inward ets, a group consisting measures 36 by 14 miles in years ago. ESA/ROSETTA/NAVCAM extent. The images were reaches. Occasionally, toward the Sun. Short-period comets, on of only about a dozen captured by the Galileo through a gravitational the other hand, reside closer in and have members, reside in spacecraft August 28, 1993. kick, they travel inward, orbits with periods less than 200 years. the main asteroid belt. Similar objects, with their circular orbits, may have deposited water on Earth billions of years ago. This class, which includes 133P/Elst-Pizarro, 118401 (1999 RE70), and P/2005 U1 (Read), exists at the crossroads between comets and asteroids. By contrast, according to the Minor Planet Center, scientists know of nearly 780,000 minor planets. Of these, about 520,000 have been studied well enough to warrant permanent numerical designations, and more than 21,000 asteroids have names. Astronomers believe the total number of asteroids in the solar system larger than 1 mile (1.6 km) across is over 1 million. The largest asteroid in the main belt is Ceres, which has a diameter of about 600 miles (970 km). Altogether, the mass of NASA/JPL 2 ASTRONOMY INSIGHTS • OCTOBER 2018 NASA/NOAO/NSF/T. RECTOR, Z. LEVAY, AND L. FRATTARE L. AND LEVAY, Z. RECTOR, NASA/NOAO/NSF/T. DIRTY ICEBALL. HOLY ASTEROID. From main-belt asteroids adds up to only about found a faint cometary coma surrounding Comet NEAT (C/2001 Q4) July 2011 to September 2012, 4 percent of the Moon’s mass. this body. Finally, 4015 Wilson-Harrington, typifies the kind of NASA’s Dawn spacecraft During the 1980s and 1990s, scientists’ an object first observed as a comet in 1949 soft coma and glowing captured the images used to neat distinction between comets and aster- and later independently discovered as an tail that amateur create this beautiful mosaic of oids began to blur. With the discovery of the asteroid in 1979, shares both designations. astronomers hope to see the massive asteroid 4 Vesta. Kuiper Belt, it became clear that a vast pop- The 1949 observations showed cometary through their telescopes. Vesta has a towering ulation of icy bodies existed on the solar sys- characteristics, while the later ones did not. Astronomers using the mountain at its south pole WIYN Telescope on Kitt (bottom) that’s twice the tem’s fringe, much closer than the Oort Cloud. All this points to a complex solar system in Peak, Arizona, caught height of Mount Everest, as Discoveries of main-belt comets further which the orbits and behaviors of asteroids this view of NEAT on well as a set of three craters blurred the distinction. Certainly, some and comets are related more than astrono- May 7, 2004. (top left) commonly referred to main-belt asteroids could be ancient mers originally envisioned. as the “snowman.” ex-comets whose volatiles evaporated long ago, leaving only a rocky core. The discoveries of other bodies with peculiar properties led to the cross-listing of several objects as both asteroids and com- ets. These include 2060 Chiron, an object discovered in 1977 by American astron- omer Charles T. Kowal, then at Palomar Observatory. It’s the first member of an asteroid class known as centaurs, with orbits between Saturn and Uranus. This unusual asteroid came under intense study, and in 1988, astronomers watched it surprisingly undergo an outburst in brightness, an act characteristic of comets, not asteroids. Additionally, 60558 Echeclus, a centaur discovered in 2000, appeared to be an inno- cent asteroid. But in late 2005, astronomers NASA/JPL-CALTECH/UCAL/MPS/DLR/IDA WWW.ASTRONOMY.COM 3 THE BEST IMAGES ARE IN HD Celestron’s EdgeHD optical system sets a higher standard for catadioptric telescopes, revolutionizing both visual observing and astroimaging. Its aplanatic Schmidt optical design produces a completely flat field—all the way to the edge of today’s ultra-wide eyepieces and large imaging sensors. The result is crisp, high resolution images devoid of visual defects like off-axis coma, field curvature, and astigmatism. So, are you ready to experience the EdgeHD difference for yourself? For the month of October, all German equatorial EdgeHD telescopes and optical tubes are on sale. Enjoy big discounts on all our customer favorites, from the portable and beginner-friendly Advanced VX 8” EdgeHD to our flagship CGX-L 1400HD, and everything in between. SAVE NOW on all German equatorial EDGEHD telescopes. Sales ends 10/31 CELESTRON PREMIER SELECT DEALERS B&H Photo – 800.947.9970 – bhphotovideo.com OPT Telescopes – 800.483.6287 – optcorp.com High Point Scientific – 800.266.9590 – highpointscientific.com Woodland Hills – 888.427.8766 – telescopes.net Optics Planet – 800.504.5897 – opticsplanet.com Adorama – 800.223.2500 – adorama.com SHOP THE SALE AT Astronomics – 800.422.7876 – astronomics.com Focus Camera – 800.221.0828 – focuscamera.com Exploring Jupiter’s TROJAN ASTEROIDS Astronomers have studied the giant planet’s captured asteroids only from afar. That’s about to change. by Joel Davis In 2021, NASA will launch the Lucy mission, which will investigate two primitive asteroid populations that congregate at stable points along Jupiter’s orbital path. By getting a closer look at these asteroids, called Trojans, Lucy may revolutionize our understanding of how the solar system formed. ASTRONOMY: ROEN KELLY 6 ASTRONOMY INSIGHTS • OCTOBER 2018 WWW.ASTRONOMY.COM 7 upiter is by far the largest and ancient bodies. What the spacecraft uncovers could most massive planet in the solar confirm some current theories of the solar system’s system. And befitting a world early evolution — or turn it all upside down. named for the Roman king of the gods, Jupiter has an impres- The sweet spots sive entourage. It includes a Every planet has several gravitational “sweet spots” set of faint and dusty rings, 67 where a relatively tiny body, like an asteroid, can known or suspected moons, and maintain a fairly stable position in relation to two two swarms of asteroids that larger bodies, such as the Sun and the planet, or precede and follow the planet in the planet and its moon. The gravitational pull its orbit. These last are the Trojan asteroids. between the two large bodies provides enough For all we’ve discovered about Jupiter, its centrifugal force to keep the smaller object orbit- Jmoons, and even its gossamer rings, we know pre- ing with them. These sweet spots are called cious little about the Trojans. Pioneers 10 and 11, Lagrangian points, named for Joseph-Louis the two Voyagers, Galileo, and Juno have all Lagrange, who identified two of them in 1772. returned a wealth of data about the jovian system. Five Lagrangian points exist for each such sys- Until now, though, the only way to study the tem. L1, L2, and L3 (discovered by mathematician Trojans has been from afar, with ground-based Leonhard Euler a few years before Lagrange iden- and Earth-orbiting telescopes. tified the other two) fall on a straight line drawn That’s about to change. In 2017, NASA gave the through the two large masses.
Recommended publications
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • Thermal-IR Spectral Analysis of Jupiter's Trojan Asteroids
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1238.pdf THERMAL-IR SPECTRAL ANALYSIS OF JUPITER’S TROJAN ASTEROIDS: DETECTING SILICATES. A. C. Martin1, J. P. Emery1, S. S. Lindsay2, 1The University of Tennessee Earth and Planetary Science Department, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville TN, 37996, 2The University of Tennessee, De- partment of Physics, 1408 Circle Drive, Knoxville TN, 37996.. Introduction: Jupiter’s Trojan asteroids (hereafter (e.g., [11],[8]). Had Trojans and JFCs formed in the Trojans) populate Jupiter’s L4 and L5 Lagrange points. same region, Trojans should have fine-grained silicates The L4 and L5 points are dynamically stable over the in primarily amorphous phases. lifetime of the Solar System, and, therefore, Trojans Analysis of TIR spectra by [12] shows that the sur- could have resided in the L4 and L5 regions for nearly faces of three Trojans (624 Hektor, 1172 Aneas, and 911 4.5 Gyr [1]. However, it is still uncertain where the Tro- Agamemnon) have emissivity features similar to fine- jans formed and when they were captured. Asteroid or- grained silicates in comet comae. The TIR wavelength igins provide an effective means of constraining the region is beneficial for silicate mineralogy detection be- events that dynamically shaped the solar system. Tro- cause it contains fundamental Si-O molecular vibrations jans may help in determining the extent of radial mixing (stretching at 9 –12 µm and bending at 14 – 25 µm; that occurred during giant planet migration. [13]). Comets produce optically thin comae that result Trojans are thought to have formed in one of two in strong 10-µm emission features when comprised of locations: (1) in their current position (~5.2 AU), or (2) fine-grained (≤10 to 20 µm) dispersed silicates.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 51: DECEMBER 13-19 Presented by The Earthrise Institute # 51 Authored by Alan Hale COMET OF THE WEEK: The Great Comet of 1680 Perihelion: 1680 December 18.49, q = 0.006 AU The Great Comet of 1680 over Rotterdam in The Netherlands, during late December 1680 as painted by the Dutch artist Lieve Verschuier. This particular comet was undoubtedly one of the brightest comets of the 17th Century, but it is also one of the most important comets in history from a scientific perspective, and perhaps even from the perspective of overall human history. While there were certainly plenty of superstitions attached to the comet’s appearance, the scientific investigations made of it were among the beginnings of the era in European history we now call The Enlightenment, and indeed, in a sense the Great Comet of 1680 can perhaps be considered as one of the sparks of that era. The significance began with the comet’s discovery, which was made on the morning of November 14, 1680, by a German astronomer residing in Coburg, Gottfried Kirch – the first comet ever to be discovered by means of a telescope. It was already around 4th magnitude at that time, and located near the star Regulus in the constellation Leo; from that point it traveled eastward and brightened rapidly, being closest to Earth (0.42 AU) on November 30. By that time it was a conspicuous naked-eye object with a tail 20 to 30 degrees long, and it remained visible for another week before disappearing into morning twilight.
    [Show full text]
  • Arxiv:1406.5253V1 [Astro-Ph.EP] 20 Jun 2014
    Physical Properties of Near-Earth Asteroid 2011 MD M. Mommert Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA D. Farnocchia Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA J. L. Hora Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA S. R. Chesley Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA D. E. Trilling Department of Physics and Astronomy, Northern Arizona University, PO Box 6010, Flagstaff, AZ 86011, USA P. W. Chodas Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA arXiv:1406.5253v1 [astro-ph.EP] 20 Jun 2014 M. Mueller SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV, Groningen, The Netherlands A. W. Harris DLR Institute of Planetary Research, Rutherfordstrasse 2, 12489 Berlin, Germany H. A. Smith –2– Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA and G. G. Fazio Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516, USA Received ; accepted accepted by ApJL –3– ABSTRACT We report on observations of near-Earth asteroid 2011 MD with the Spitzer Space Telescope. We have spent 19.9 h of observing time with channel 2 (4.5 µm) of the Infrared Array Camera and detected the target within the 2σ positional uncertainty ellipse. Using an asteroid thermophysical model and a model of non- gravitational forces acting upon the object we constrain the physical properties of 2011 MD, based on the measured flux density and available astrometry data.
    [Show full text]
  • Stardust Encounters Comet 81P///Wild 2 P
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, E12S01, doi:10.1029/2004JE002317, 2004 Stardust encounters comet 81P///Wild 2 P. Tsou,1 D. E. Brownlee,2 J. D. Anderson,1 S. Bhaskaran,1 A. R. Cheuvront,3 B. C. Clark,3 T. Duxbury,1 T. Economou,4 S. F. Green,5 M. S. Hanner,1 F. Ho¨rz,6 J. Kissel,7 J. A. M. McDonnell,5 R. L. Newburn,1 R. E. Ryan,1 S. A. Sandford,8 Z. Sekanina,1 A. J. Tuzzolino,4 J. M. Vellinga,3 and M. E. Zolensky6 Received 9 July 2004; revised 23 September 2004; accepted 28 October 2004; published 22 December 2004. [1] Stardust successfully encountered comet 81P/Wild 2 on 2 January 2004 at a distance of 236.4 ± 1 km. All encounter investigations acquired valuable new and surprising findings. The time-of-flight spectrometer registered 29 spectra during flyby and measured the first negative ion mass spectra of cometary particles. The dust detectors recorded particles over a broad mass range, 10À11 to 10À4 g. Unexpectedly, the dust distribution along Stardust’s flight path was far from uniform, but instead occurred in short ‘‘bursts,’’ suggesting in-flight breakup of fragments ejected from the nucleus. High-resolution, stunning images of the Wild 2 surface show a diverse and complex variety of landforms not seen from comets 1P/Halley and 19P/Borrelly or icy satellites of the outer solar system. Longer-exposure images reveal large numbers of jets projected nearly around the entire perimeter of the nucleus, many of which appear to be highly collimated.
    [Show full text]
  • A Visit to Gaspra
    A Visit to Gaspra This is a ground-based photo of the first minor planet ever to be visited by a spacecraft. On October 29, 1991, the NASA spacecraft Galileo flew past minor planet No. 951 Gaspra on its way to Jupiter where it will arrive in De- cember 1995. The distance to Gaspra from the Earth was 410 million km at the time of the fly-by. Although Galilw's high-galn antenna has not yet been un- folded and could therefore not be used, JPL engineers succeeded In getting a 300-line Image via the low-gain antenna; the others will be sent when Gallleo is again near the Earth. The first image showed the irregular form of Gaspra and Several craters on its surface with a res- otution of ht130 metres. The diarne- ter was measured as 16 kilornetms. Gaspra was discovered on July 30, 191 6 at the Simeis Observatq in the mountains of Cximea, the Russia. The sofi on the southern coast of Crimea, in On this date, Its distance from the Earth discoverer was the welt-known Russian which the famous Russian writer Lev was 262 million km and the magnitude astronomer Grigorij Nikolaevich Neuj- Nikolaevfch Tolstoy (1828- 1910) spent was about 15. min (born 1886 in Tbilisi, Georgia; died many years of his life." The village of The background of the photo is a I946 in Leningrad), who later became Gaspra is located about 10 krn south- region in the southern constellation Director of that observatory (1925- 1931 west of Yalta. Ophlochus (the Serpent-holder) which is and 1936-1941) and Director of the The present photo was obtained with characterld by relatively few stars, but Pulkovo Obsewatoty near St.
    [Show full text]
  • Joint Institute for VLBI in Europe Biennial Report 2011-2012
    Joint Institute For VLBI in Europe 11-12 Biennial report 2011-2012 The Joint Institute for VLBI in Europe (JIVE) was established as a scientific foundation in December 1993. JIVE’s mandate is to support the operations of the European VLBI Network (EVN) in the widest sense. JIVE’s operations are supported via multi‐national funds from the following organisations: Netherlands Institute for Radio Astronomy (ASTRON), the Netherlands, National Center for Scientific Research (CNRS), France National Geographical Institute (IGN), Spain, Italian National Institute of Astrophysics (INAF), Italy, Max Planck Institute for Radio Astronomy (MPIfR), Germany, National Astronomical Observatories of China (NAOC), China, National Research Foundation (NRF), South Africa Netherlands Organisation for Scientific Research (NWO), the Netherlands, Onsala Space Observatory (OSO), Sweden, Science & Technology Facilities Council (STFC), UK Joint Institute for VLBI in Europe | Biennial report 2011‐2012 Contents 1. INSTITUTE ....................................................................................................................................................... 1 1.1. preparing for the next funding cycle ..................................................................................................... 1 1.2. enhancing the VLBI capabilities ............................................................................................................. 2 1.3. JIVE events ............................................................................................................................................
    [Show full text]
  • 1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
    Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H.
    [Show full text]
  • Asteroid Touring Nanosatellite Fleet
    Asteroid Touring Nanosatellite Fleet S Mihkel Pajusalu Postdoctoral fellow Massachusetts Institute of Technology (and Tartu Observatory) [email protected] + Pekka Janhunen, Andris Slavinskis, and the MAT collaboration Bio • 2010 MSc in Physics, University of Tartu, Estonia • 2010-2015 ESTCube-1 team, leader of Electrical Power Subsystem • 2014 PhD in Physics University of Tartu, Estonia • 2015 - 2019 Postdoc at MIT, Seager Group (astrobiology and instrumentation development for the MAT mission) Only 12 asteroids have been visited this far 1 Ceres Image Credit: NASA / 4 253 Mathilde 433 Eros JPL-Caltech / UCLA / Vesta NEAR /NASA NEAR Shoemaker MPS / DLR / IDA / Justin NASA/JPL/JHUAPL Cowart 951 Gaspra 243 Ida and 2867 Šteins 21 Lutetia Dactyl Galileo/NASA Rosetta ESA MPS ESA 2010 MPS for Galileo/NASA / JPL/USGS for OSIRIS Team OSIRIS Team MPS/UPD/LAM/IAA MPS/UPD/LAM/IAA/RSS D/INTA/UPM/DASP/IDA 9969 Braille 5535 Annefrank Deep Space 25143 Itokawa 4179 Toutatis Stardust/JPL/NASA 1/NASA/JPL/USGS Hayabusa/JAXA Chang’e/CNSA Multiple Asteroid Touring (MAT) mission See Slavinskis et al, “Nanospacecraft Fleet for Multi-asteroid Touring with Electric Solar Wind Sails”, IEEE Aerospace conference, 2018 Mission details • The reference mission contains 50 identical CubeSats • Estimated total cost <100 million USD • Each to visit 6 targets on average • 100 km – 1000 km flybys • Total of 300 visits during 3.2 years • Even if 50% are successful, number of visited asteroids would increase by a factor of 10 • First published concept from Finnish Meteorological
    [Show full text]
  • Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
    Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments.
    [Show full text]
  • One Team from This State Was the First Your Writer Ever Lost to at a National Tournament
    1. (Meta) One team from this state was the first your writer ever lost to at a National tournament. One ​ coach from this state created (^) an A-set tournament solely in order to qualify his team for HSNCT ​ after proposing an all-female tournament, Title IX Bowl. A 2009 cheating scandal in (+) this state ​ involved a team’s gmail account being used by its treasurer to access SCT questions, which he then used to defeat such powerhouse teams as Vanderbilt B. A standing rule (*) of ILQBM bans memes ​ from this state, and the top-ranked team from this state lost to their own B team at New Trier Varsity. For ten points, name this state home to teams such as Northview and Chattahoochee. Answer: Georgia ​ Bonus: Name the following about other cheaters. [10] This Windhaven Park E player won a tournament with a 66/18/3 statline after improperly accessing IS-164 questions. He did not demonstrate his knowledge via skype due to a sudden attack of buzzer shyness. Answer: Ethan McBride ​ [10] (pseudonyms acceptable) This early Ohioan cheater notably created two sock puppet forum accounts pretending to be his friend and his friend’s mother to attest to his good character and mask the fact that he played a HS tournament despite being in college. Answer: Basileus (accept dafirenze, Paul Harold, Nancydf64) ​ ​ ​ ​ ​ ​ ​ ​ [10] This most notorious of quizbowl cheaters was referred to as “the grand vizier of fuckfaces” in a hate thread dedicated to him. He won three ICTs for Harvard, all of which were rescinded. Answer: Andy Watkins ​ 2.
    [Show full text]