Direct Manipulation for Musical Interfaces Based on Visual Software: Design and Evaluation Jeronimo Barbosa

Total Page:16

File Type:pdf, Size:1020Kb

Direct Manipulation for Musical Interfaces Based on Visual Software: Design and Evaluation Jeronimo Barbosa Direct Manipulation for Musical Interfaces Based on Visual Software: Design and Evaluation Jeronimo Barbosa To cite this version: Jeronimo Barbosa. Direct Manipulation for Musical Interfaces Based on Visual Software: Design and Evaluation. Human-Computer Interaction [cs.HC]. McGill University, 2019. English. tel-02436801 HAL Id: tel-02436801 https://hal.inria.fr/tel-02436801 Submitted on 13 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Direct Manipulation for Musical Interfaces Based on Visual Software: Design and Evaluation Jeronimo Barbosa Department of Music Technology Input Devices and Music Interaction Laboratory McGill University Montreal, Canada July 2019 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. © 2019 Jeronimo Barbosa 2019/07/09 i Abstract With the popularization of mobile computing and software-distribution platforms like the Apple Store and Google Play, a plethora of remarkable software-based musical interfaces with dynamic visual feedback are being designed today. Recent examples such as the Loopy, the Borderlands, the Ocarina illustrate that powerful visual interfaces are capable of captivating amateur and expert musicians alike by making music manipulation more direct and straightforward. However, while successful examples are available, effectively designing such direct interfaces remains challenging, typically proceeding “as more art than science”. For example, unlike acoustic instruments, sound production is physically decoupled from input controls, yielding infinite possi- bilities for mapping. Moreover, increasing ease-of-use for novices can lead to toy applications that disinterest experts. Finally, analyzing successful crafts remain unusual, and little music interface research is being carried to better understand these interfaces. This thesis attempts to understand these musical interfaces better, aiming at providing empir- ical evidence to inform their design and evaluation. Borrowing from human-computer interaction research, I hypothesize that one effective strategy concerns adopting an interaction model known as direct manipulation–characterized by continuous visual representation of the object of interest, physical actions to manipulate the visual representations, rapid visual feedback, and incremental and easily reversible actions. To investigate this hypothesis, I report exploratory case studies where direct manipulation is designed and evaluated in three specific contexts of music tools: a) live looping tools;b)tools for creating interactive artistic installations; and c) music authoring tools. As a result, I introduce three novel software music tools: Voice Reaping Machine; ZenStates; and StateSynth. Finally, I present a set of interface design strategies and evaluation approaches for effectively designing direct manipulation in musical interfaces based on visuals. ii Sommaire Grâce à la popularisation des plateformes d’informatique mobile et de distribution de logiciels, telles que l’Apple Store et Google Play, de nombreuses interfaces musicales basées sur des logiciels avec retour visuel sont en cours de conception. Des exemples récents tels que Loopy, Borderlands et Ocarina montrent que de puissantes interfaces logicielles visuelles sont capables de captiver autant les musiciens amateurs que les experts, tout en fournissant une manipulation musicale plus directe. Bien que certains exemples soient disponibles, il demeure difficile de conceptualiser de telles in- terfaces directes, puisque l’accent est porté davantage sur “l’art plutôt que la science”. Par exemple, contrairement aux instruments acoustiques, la production du son est physiquement découplée des commandes d’entrée, offrant ainsi des possibilités infinies de mappage. De plus, la facilité d’accès et d’utilisation grandissante pour les novices peut conduire à des applications ressemblant plutôt à des jouets, ce qui désintéresse les experts. Enfin, l’analyse des interfaces musicales existantes reste inhabituelle et peu de recherches sont menées afin de mieux comprendre ces interfaces. Cette thèse a pour objectif de mieux comprendre ces interfaces musicales dans le but de fournir des bases empiriques qui informeront les principes entourant leur conception et leur évaluation. Tout en me basant sur les recherches conduites dans le domaine de l’interaction personne-machine, je propose l’hypothèse qu’une stratégie efficace consiste à adopter un modèle d’interaction appelé manipulation directe (MD) caractérisé par une représentation visuelle continue de l’objet en ques- tion, des actions physiques pour manipuler les représentations visuelles, un retour visuel rapide, et des actions incrémentales facilement réversibles. Afin d’étudier cette hypothèse, je présente des études de cas exploratoires au sein desquelles la MD est conçue et évaluée selon trois contextes spécifiques reliés à des outils musicaux: a) outils de bouclage en temps réel;b)outils de création d’installations artistiques interactives;etc)outils de création musicale. En conséquence, je présente trois nouveaux outils logiciels de musique: le Voice Reaping Machine;leZenStates;etleStateSynth. Enfin, je présente un ensemble de stratégies de conception d’interface et d’approches d’évaluation permettant de conceptualiser efficacement la MD pour les interfaces musicales logicielles. iii Acknowledgements This thesis would not exist without the invaluable support of many people. I am immensely grateful to: • My advisor, Dr. Marcelo M. Wanderley, and my co-advisor, Dr. Stéphane Huot; • All music technology faculty and my comprehensive exams committee–Dr. Catherine Guas- tavino, Dr. Gary Scavone, Dr. Isabelle Cossette, and Dr. Eleanor Stubley–, for their insightful comments and early feedback; • Darryl Cameron and Yves Méthot, for their technical support with the prototypes and setting up experiments; • All collaborators–especially Dr. Sofian Audry and Dr. Chris Salter–for the opportunity and the exchange; • Current and past colleagues from IDMIL, Music Tech Area, and CIRMMT; • My friends in Canada, for the daily support and encouragement, and in Brazil, for their wisdom and endless inspiration. May many carnivals be ahead of us; • My family, Mamadi, Papadi, and Bocodi, for their love and unconditional support; • Kamilla de Souza, for the unspoken. What else to say? I dedicate this thesis to the memory of my old grandpa, Macário Costa. “O sorriso na chegada da fazenda de meus filhos e amigos, que adoro e quero bem”. iv Contribution of Authors This document is organized as a manuscript-based thesis, gathering five different papers writ- ten during my PhD studies. Overall, it presents two key contributions: 1) Three novel software music tools: the Voice Reaping Machine; the ZenStates; and the StateSynth; and 2) A set of interface design strategies and evaluation approaches for effectively designing direct manipula- tion in software-based visually-oriented musical interfaces. Following, I detail contributions per manuscript, describing my individual contributions. Chapter 2 Jeronimo Barbosa, Joseph Malloch, Stéphane Huot, and Marcelo M. Wanderley. “What does ’Evaluation’ mean for the NIME community?” In Proceedings of the 2015 International Con- ference on New Interfaces for Musical Expression, Baton Rouge, USA. This chapter presents an exploratory survey on the usage of evaluation studies within musical interface design. Here, I have carried both research and writing. Collaborators have contributed by discussing strategies for data analysis, discussing results, and reviewing early versions of the text. Chapter 3 Jeronimo Barbosa, Marcelo M. Wanderley, and Stéphane Huot. “Exploring Playfulness in NIME Design: The Case of Live Looping Tools.” In Proceedings of the 2017 International Confer- ence on New Interfaces for Musical Expression, Copenhagen, Denmark. This chapter describes a case study on using design rationale as process for creating playful- oriented NIMEs–in particular, applied to the specific context of Live looping. A second contribu- tion outcomes from this process: a visual direct manipulation-based live looping tool called the Voice Reaping Machine. Here, I have carried all the design research, technical development, and v writing. Collaborators have contributed by reviewing early versions of the design space and the guidelines, as well as providing feedback during the entire manuscript writing. Chapter 4 Jeronimo Barbosa, Sofian Audry, Christopher L. Salter, Marcelo M. Wanderley, and Stéphane Huot. “Designing Behavioral Show-Control for Artistic Responsive Environments: The Case of the ‘Qualified-Self’ Project”. This chapter contributes with a design study investigating the composition practice of artistic responsive environments, driving the development of two visual behavioral show-control systems (one of them is ZenStates, introduced on Chapter 5). A second contribution concerns lessons learned from an exploratory real-world application of the ZenStates in a professional artistic piece. My individual contributions
Recommended publications
  • Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
    Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific
    [Show full text]
  • Music Mouse™ - an Intelligent Instrument
    Music Mouse™ - An Intelligent Instrument Version for Atari ST by Laurie Spiegel Program and Manual © 1986-1993 Laurie Spiegel. All Rights Reserved. 0 Table of Contents ______________________________________________________________________________ 3 Why Music Mouse? - An Introduction ______________________________________________________________________________ 4 What Music Mouse Is ______________________________________________________________________________ 5 Setting Up and Running Music Mouse 5 Setting Up for MIDI 5 Using Music Mouse with a MIDI Instrument 6 Changing MIDI Channels for Music Mouse Output 6 Playing Along with Music Mouse on an External MIDI Instrument 6 Patching MIDI Through Music Mouse 7 Recording Music Mouse's Output 7 Other Setup Considerations ______________________________________________________________________________ 8 Playing a Music Mouse 8 The Mouse 8 The Polyphonic Cursor and Pitch Display 9 The Keyboard 9 The Menus 10 In General ______________________________________________________________________________ 11 Music Mouse Keyboard Controls ______________________________________________________________________________ 12 Types of Keyboard Controls ______________________________________________________________________________ 13 Music Mouse Keyboard Usage 13 1 - General Controls 14 2 - Type of Harmony 15 3 - Transposition 16 4 - Addition of Melodic Patterning 18 5 - Voicing 19 6 - Loudness, Muting, and Articulation 20 7 - Tempo 21 8 - Rhythmic Treatments 22 10 - MIDI Sound Selection and Control 1 ______________________________________________________________________________
    [Show full text]
  • Mary Had a Little Scoretable* Or the Reactable* Goes Melodic
    Proceedings of the 2006 International Conference on New Interfaces for Musical Expression (NIME06), Paris, France Mary had a little scoreTable* or the reacTable* goes melodic Sergi Jordà Marcos Alonso Music Technology Group Music Technology Group IUA, Universitat Pompeu Fabra IUA, Universitat Pompeu Fabra 08003, Barcelona, Spain 08003, Barcelona, Spain [email protected] [email protected] ABSTRACT selection of the correct notes [18]. When in 1997 one of the This paper introduces the scoreTable*, a tangible interactive authors designed FMOL, an instrument that was conceived with music score editor which started as a simple application for the proselytist intention to introduce newcomers, possibly non- demoing “traditional” approaches to music creation, using the musicians, to more experimental and ‘noisy’ music, in order to reacTable* technology, and which has evolved into an avoid a “wrong note syndrome” that would inhibit the independent research project on its own. After a brief performer’s experimentation and freedom of expression, he discussion on the role of pitch in music, we present a brief decided instead to minimize the importance of pitch. FMOL overview of related tangible music editors, and discuss several does neither fix nor correct pitch; it just dethrones it from its paradigms in computer music creation, contrasting synchronous privileged position and turns it into merely another parameter, with asynchronous approaches. The final part of the paper both at the control and at the perception level. describes the current state of the scoreTable* as well as its In any case, the prevalence of pitch as the primary variable in future lines of research.
    [Show full text]
  • Chuck: a Strongly Timed Computer Music Language
    Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance.
    [Show full text]
  • Computer Music
    THE OXFORD HANDBOOK OF COMPUTER MUSIC Edited by ROGER T. DEAN OXFORD UNIVERSITY PRESS OXFORD UNIVERSITY PRESS Oxford University Press, Inc., publishes works that further Oxford University's objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offices in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2009 by Oxford University Press, Inc. First published as an Oxford University Press paperback ion Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data The Oxford handbook of computer music / edited by Roger T. Dean. p. cm. Includes bibliographical references and index. ISBN 978-0-19-979103-0 (alk. paper) i. Computer music—History and criticism. I. Dean, R. T. MI T 1.80.09 1009 i 1008046594 789.99 OXF tin Printed in the United Stares of America on acid-free paper CHAPTER 12 SENSOR-BASED MUSICAL INSTRUMENTS AND INTERACTIVE MUSIC ATAU TANAKA MUSICIANS, composers, and instrument builders have been fascinated by the expres- sive potential of electrical and electronic technologies since the advent of electricity itself.
    [Show full text]
  • The [Hid] Toolkit for Pd Hans-Christoph Steiner
    The [hid] Toolkit for Pd Hans-Christoph Steiner The [hid] Toolkit for Pd Hans-Christoph Steiner Interactive Telecommunications Program, New York University Masters Thesis Interactive Telecommunications Program. Fall 2004 1 The [hid] Toolkit for Pd Hans-Christoph Steiner Table of Contents Abstract 3 Introduction 4 Concept 7 Project Rationale 16 Background and Context 17 Prototype Design 23 Implementation of Prototype 26 User Testing 27 Conclusion 29 Future Work 29 Appendices 32 Bibliography 35 Interactive Telecommunications Program. Fall 2004 2 The [hid] Toolkit for Pd Hans-Christoph Steiner 1. Abstract The [hid] toolkit is a set of Pd objects for designing instruments to harness the real-time interaction made possible by contemporary computer music performance environments. This interaction has been too frequently tied to the keyboard-mouse-monitor model, narrowly constraining the range of possible gestures the performer can use. A multitude of gestural input devices are readily available, making it much easier utilize a broad range of gestures. Consumer Human Interface Devices (HIDs) such as joysticks, tablets, and mice are cheap, and some can be quite good musical controllers, including some that can provide non-auditory feedback. The [hid] toolkit provides objects for using the data from these devices and controlling the feedback, as well as objects for mapping the data from these devices to the desired output. Many musicians are using and creating gestural instruments of their own, but the creators rarely develop virtuosity, and these instruments rarely gain wide acceptance due to the expense and skill level needed to build them; this prevents the formation of a body of technique for these new instruments.
    [Show full text]
  • Interactive Electroacoustics
    Interactive Electroacoustics Submitted for the degree of Doctor of Philosophy by Jon Robert Drummond B.Mus M.Sc (Hons) June 2007 School of Communication Arts University of Western Sydney Acknowledgements Page I would like to thank my principal supervisor Dr Garth Paine for his direction, support and patience through this journey. I would also like to thank my associate supervisors Ian Stevenson and Sarah Waterson. I would also like to thank Dr Greg Schiemer and Richard Vella for their ongoing counsel and faith. Finally, I would like to thank my family, my beautiful partner Emma Milne and my two beautiful daughters Amelia Milne and Demeter Milne for all their support and encouragement. Statement of Authentication The work presented in this thesis is, to the best of my knowledge and belief, original except as acknowledged in the text. I hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution. …………………………………………… Table of Contents TABLE OF CONTENTS ..................................................................................................................I LIST OF TABLES..........................................................................................................................VI LIST OF FIGURES AND ILLUSTRATIONS............................................................................ VII ABSTRACT..................................................................................................................................... X CHAPTER ONE: INTRODUCTION.............................................................................................
    [Show full text]
  • A Comparison of Solenoid-Based Strategies for Robotic Drumming
    A COMPARISON OF SOLENOID-BASED STRATEGIES FOR ROBOTIC DRUMMING Ajay Kapur 1,2,3 Trimpin Eric Singer2 Afzal Suleman1 George Tzanetakis1 Music Intelligence and Sound Technology Interdisciplinary Centre (MISTIC) 1 University of Victoria, Victoria, British Columbia, Canada League of Electronic Urban Music Robots (LEMUR) 2 Brooklyn, New York, USA KarmetiK Technology (A Division of KarmetiK LLC) 3 Reno, Nevada, USA ABSTRACT drums gives the students a more realistic paradigm for concentrated rehearsal. Solenoids are important components of robotic A number of different drumming robots have been drumming systems and several designs have been designed in the academic and artistic communities. proposed. In this paper, we compare different designs Researchers at Harvard University struggled to create an in terms of speed and dynamic range and discuss the accurate robotic drum roll [1], while next door tradeoffs involved. The evaluation is performed in the researchers at MIT developed Cog to control the context of MahaDeviBot, a custom built 12-armed MIDI number of times a stick can bounce [2]. Gil Weinberg controlled mechanical device that performs a variety of developed Haile to explore human to robot interaction Indian folk instruments, including frame-drums, bells, [3]. Mitsuo Kawato continues to develop hydraulic and shakers. To measure speed and dynamic range a systems for humanoid drumming [4]. Many artists have haptic robotic feedback system using piezo sensors was presented a number of different pieces including built. The evaluation methods presented are modular Baginsky’s “Thelxiapeia” for modified rototom [5], and can be administered to any hyperinstrument, new MacMurtie’s life size sculptures [6], Gordon Monohans interface or robotic system to inform composers about “Machine Matrix” [7], and Miles van Dorssen’s “Cell the strengths and limitation of different designs to guide Project” including an 8 octave Xylophone, Bamboo composition and performance.
    [Show full text]
  • Case Studies of Women and Queer Electroacoustic Music Composers
    Graduate Theses, Dissertations, and Problem Reports 2019 Music Technology, Gender, and Sexuality: Case Studies of Women and Queer Electroacoustic Music Composers Justin Thomas Massey West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Musicology Commons, and the Music Performance Commons Recommended Citation Massey, Justin Thomas, "Music Technology, Gender, and Sexuality: Case Studies of Women and Queer Electroacoustic Music Composers" (2019). Graduate Theses, Dissertations, and Problem Reports. 7460. https://researchrepository.wvu.edu/etd/7460 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Music Technology, Gender, and Sexuality: Case Studies of Women and Queer Electroacoustic Music Composers Justin T. Massey A Dissertation submitted To the College of Creative Arts At West Virginia University In partial fulfillment of the requirements for the degree of Doctor of Musical Arts in Saxophone Performance Michael Ibrahim, DMA, Chair Evan MacCarthy, PhD, Research Advisor Jared Sims, DMA Matthew Heap, PhD Jonah Katz, PhD School of Music Morgantown, West Virginia 2019 Keywords: Music Technology, Electroacoustic Music, Feminist Studies, Queer Studies, New Music, Elainie Lillios, Jess Rowland, Carolyn Borcherding Copyright © 2019 Justin T.
    [Show full text]
  • Boston Symphony Orchestra Concert Programs, Summer, 1990
    FESTIVAL OF CONTE AUGUST 4th - 9th 1990 j:*sT?\€^ S& EDITION PETERS -&B) t*v^v- iT^^ RECENT ADDITIONS TO OUR CONTEMPORARY MUSIC CATALOGUE P66438a John Becker Concerto for Violin and Orchestra. $20.00 Violin and Piano (Edited by Gregory Fulkerson) P67233 Martin Boykan String Quartet no. 3 $40.00 (Score and Parts) (1988 Walter Hinrichsen Award) P66832 George Crumb Apparition $20.00 Elegiac Songs and Vocalises for Soprano and Amplified Piano P67261 Roger Reynolds Whispers Out of Time $35.00 String Orchestra (Score)* (1989 Pulitzer Prize) P67283 Bruce J. Taub Of the Wing of Madness $30.00 Chamber Orchestra (Score)* P67273 Chinary Ung Spiral $15.00 Vc, Pf and Perc (Score) (1989 Grawemeyer and Friedheim Award) P66532 Charles Wuorinen The Blue Bamboula $15.00 Piano Solo * Performance materials availablefrom our rental department C.F. PETERS CORPORATION ^373 Park Avenue So./New York, NY 10016/Phone (212) 686-4l47/Fax (212) 689-9412 1990 FESTIVAL OF CONTEMPORARY MUSIC Oliver Knussen, Festival Coordinator by the sponsored TanglewGDd TANGLEWOOD MUSIC CENTER Music Leon Fleisher, Artistic Director Center Gilbert Kalish, Chairman of the Faculty Lukas Foss, Composer-in-Residence Oliver Knussen, Coordinator of Contemporary Music Activities Bradley Lubman, Assistant to Oliver Knussen Richard Ortner, Administrator Barbara Logue, Assistant to Richard Ortner James E. Whitaker, Chief Coordinator Carol Wood worth, Secretary to the Faculty Harry Shapiro, Orchestra Manager Works presented at this year's Festival were prepared under the guidance of the following Tanglewood Music Center Faculty: Frank Epstein Donald MacCourt Norman Fischer John Oliver Gilbert Kalish Peter Serkin Oliver Knussen Joel Smirnoff loel Krosnick Yehudi Wyner 1990 Visiting Composer/Teachers Elliott Carter John Harbison Tod Machover Donald Martino George Perle Steven Stucky The 1990 Festival of Contemporary Music is supported by a gift from Dr.
    [Show full text]
  • Philharmonia Baroque Orchestra Sunday / July 18 / 4:00Pm / Venetian Theater
    SUMMER 2 0 2 1 Contents 2 Welcome to Caramoor / Letter from the CEO and Chairman 3 Summer 2021 Calendar 8 Eat, Drink, & Listen! 9 Playing to Caramoor’s Strengths by Kathy Schuman 12 Meet Caramoor’s new CEO, Edward J. Lewis III 14 Introducing in“C”, Trimpin’s new sound art sculpture 17 Updating the Rosen House for the 2021 Season by Roanne Wilcox PROGRAM PAGES 20 Highlights from Our Recent Special Events 22 Become a Member 24 Thank You to Our Donors 32 Thank You to Our Volunteers 33 Caramoor Leadership 34 Caramoor Staff Cover Photo: Gabe Palacio ©2021 Caramoor Center for Music & the Arts General Information 914.232.5035 149 Girdle Ridge Road Box Office 914.232.1252 PO Box 816 caramoor.org Katonah, NY 10536 Program Magazine Staff Caramoor Grounds & Performance Photos Laura Schiller, Publications Editor Gabe Palacio Photography, Katonah, NY Adam Neumann, aanstudio.com, Design gabepalacio.com Tahra Delfin,Vice President & Chief Marketing Officer Brittany Laughlin, Director of Marketing & Communications Roslyn Wertheimer, Marketing Manager Sean Jones, Marketing Coordinator Caramoor / 1 Dear Friends, It is with great joy and excitement that we welcome you back to Caramoor for our Summer 2021 season. We are so grateful that you have chosen to join us for the return of live concerts as we reopen our Venetian Theater and beautiful grounds to the public. We are thrilled to present a full summer of 35 live in-person performances – seven weeks of the ‘official’ season followed by two post-season concert series. This season we are proud to showcase our commitment to adventurous programming, including two Caramoor-commissioned world premieres, three U.S.
    [Show full text]
  • Chunity: Integrated Audiovisual Programming in Unity
    Chunity: Integrated Audiovisual Programming in Unity Jack Atherton Ge Wang CCRMA, Stanford University CCRMA, Stanford University Stanford, CA, United States Stanford, CA, United States [email protected] [email protected] Figure 1: Chunity is a programming environment for the creation of interactive audiovisual software. It combines the strongly-timed audio synthesis of the ChucK language with the high-performance graphics of the Unity game engine. ABSTRACT 1. INTRODUCTION Chunity is a programming environment for the design of in- This paper describes the Chunity project, which combines teractive audiovisual games, instruments, and experiences. the audio programming language ChucK with the game en- It embodies an audio-driven, sound-first approach that inte- gine Unity for the creation of artful and interactive audiovi- grates audio programming and graphics programming in the sual applications. Chunity is both a tool and a workflow for same workflow, taking advantage of strongly-timed audio creating tools, games, toys, instruments, and experiences. programming features of the ChucK programming language As music researchers who work with the interplay be- and the state-of-the-art real-time graphics engine found in tween sound and graphics, we seek to create tools that pri- Unity. We describe both the system and its intended work- oritize audio and allow systems to be audio-driven when flow for the creation of expressive audiovisual works. Chu- helpful (e.g. for precise, musically-timed graphics). nity was evaluated as the primary software platform in a We chose to work with ChucK and Unity to combine computer music and design course, where students created the respective affordances of each.
    [Show full text]