Co-Audicle: a Collaborative Audio Programming Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific -
Peter Blasser CV
Peter Blasser – [email protected] - 410 362 8364 Experience Ten years running a synthesizer business, ciat-lonbarde, with a focus on touch, gesture, and spatial expression into audio. All the while, documenting inventions and creations in digital video, audio, and still image. Disseminating this information via HTML web page design and YouTube. Leading workshops at various skill levels, through manual labor exploring how synthesizers work hand and hand with acoustics, culminating in montage of participants’ pieces. Performance as touring musician, conceptual lecturer, or anything in between. As an undergraduate, served as apprentice to guild pipe organ builders. Experience as racquetball coach. Low brass wind instrumentalist. Fluent in Java, Max/MSP, Supercollider, CSound, ProTools, C++, Sketchup, Osmond PCB, Dreamweaver, and Javascript. Education/Awards • 2002 Oberlin College, BA in Chinese, BM in TIMARA (Technology in Music and Related Arts), minors in Computer Science and Classics. • 2004 Fondation Daniel Langlois, Art and Technology Grant for the project “Shinths” • 2007 Baltimore City Grant for Artists, Craft Category • 2008 Baltimore City Grant for Community Arts Projects, Urban Gardening List of Appearances "Visiting Professor, TIMARA dep't, Environmental Studies dep't", Oberlin College, Oberlin, Ohio, Spring 2011 “Babier, piece for Dancer, Elasticity Transducer, and Max/MSP”, High Zero Festival of Experimental Improvised Music, Theatre Project, Baltimore, September 2010. "Sejayno:Cezanno (Opera)", CEZANNE FAST FORWARD. Baltimore Museum of Art, May 21, 2010. “Deerhorn Tapestry Installation”, Curators Incubator, 2009. MAP Maryland Art Place, September 15 – October 24, 2009. Curated by Shelly Blake-Pock, teachpaperless.blogspot.com “Deerhorn Micro-Cottage and Radionic Fish Drier”, Electro-Music Gathering, New Jersey, October 28-29, 2009. -
Chuck: a Strongly Timed Computer Music Language
Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance. -
Implementing Stochastic Synthesis for Supercollider and Iphone
Implementing stochastic synthesis for SuperCollider and iPhone Nick Collins Department of Informatics, University of Sussex, UK N [dot] Collins ]at[ sussex [dot] ac [dot] uk - http://www.cogs.susx.ac.uk/users/nc81/index.html Proceedings of the Xenakis International Symposium Southbank Centre, London, 1-3 April 2011 - www.gold.ac.uk/ccmc/xenakis-international-symposium This article reflects on Xenakis' contribution to sound synthesis, and explores practical tools for music making touched by his ideas on stochastic waveform generation. Implementations of the GENDYN algorithm for the SuperCollider audio programming language and in an iPhone app will be discussed. Some technical specifics will be reported without overburdening the exposition, including original directions in computer music research inspired by his ideas. The mass exposure of the iGendyn iPhone app in particular has provided a chance to reach a wider audience. Stochastic construction in music can apply at many timescales, and Xenakis was intrigued by the possibility of compositional unification through simultaneous engagement at multiple levels. In General Dynamic Stochastic Synthesis Xenakis found a potent way to extend stochastic music to the sample level in digital sound synthesis (Xenakis 1992, Serra 1993, Roads 1996, Hoffmann 2000, Harley 2004, Brown 2005, Luque 2006, Collins 2008, Luque 2009). In the central algorithm, samples are specified as a result of breakpoint interpolation synthesis (Roads 1996), where breakpoint positions in time and amplitude are subject to probabilistic perturbation. Random walks (up to second order) are followed with respect to various probability distributions for perturbation size. Figure 1 illustrates this for a single breakpoint; a full GENDYN implementation would allow a set of breakpoints, with each breakpoint in the set updated by individual perturbations each cycle. -
Isupercolliderkit: a Toolkit for Ios Using an Internal Supercollider Server As a Sound Engine
ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas iSuperColliderKit: A Toolkit for iOS Using an Internal SuperCollider Server as a Sound Engine Akinori Ito Kengo Watanabe Genki Kuroda Ken’ichiro Ito Tokyo University of Tech- Watanabe-DENKI Inc. Tokyo University of Tech- Tokyo University of Tech- nology [email protected] nology nology [email protected]. [email protected]. [email protected]. ac.jp ac.jp ac.jp The editor client sends the OSC code-fragments to its server. ABSTRACT Due to adopting the model, SuperCollider has feature that a iSuperColliderKit is a toolkit for iOS using an internal programmer can dynamically change some musical ele- SuperCollider Server as a sound engine. Through this re- ments, phrases, rhythms, scales and so on. The real-time search, we have adapted the exiting SuperCollider source interactivity is effectively utilized mainly in the live-coding code for iOS to the latest environment. Further we attempt- field. If the iOS developers would make their application ed to detach the UI from the sound engine so that the native adopting the “sound-server” model, using SuperCollider iOS visual objects built by objective-C or Swift, send to the seems to be a reasonable choice. However, the porting situa- internal SuperCollider server with any user interaction tion is not so good. SonicPi[5] is the one of a musical pro- events. As a result, iSuperColliderKit makes it possible to gramming environment that has SuperCollider server inter- utilize the vast resources of dynamic real-time changing nally. However, it is only for Raspberry Pi, Windows and musical elements or algorithmic composition on SuperCol- OSX. -
The Viability of the Web Browser As a Computer Music Platform
Lonce Wyse and Srikumar Subramanian The Viability of the Web Communications and New Media Department National University of Singapore Blk AS6, #03-41 Browser as a Computer 11 Computing Drive Singapore 117416 Music Platform [email protected] [email protected] Abstract: The computer music community has historically pushed the boundaries of technologies for music-making, using and developing cutting-edge computing, communication, and interfaces in a wide variety of creative practices to meet exacting standards of quality. Several separate systems and protocols have been developed to serve this community, such as Max/MSP and Pd for synthesis and teaching, JackTrip for networked audio, MIDI/OSC for communication, as well as Max/MSP and TouchOSC for interface design, to name a few. With the still-nascent Web Audio API standard and related technologies, we are now, more than ever, seeing an increase in these capabilities and their integration in a single ubiquitous platform: the Web browser. In this article, we examine the suitability of the Web browser as a computer music platform in critical aspects of audio synthesis, timing, I/O, and communication. We focus on the new Web Audio API and situate it in the context of associated technologies to understand how well they together can be expected to meet the musical, computational, and development needs of the computer music community. We identify timing and extensibility as two key areas that still need work in order to meet those needs. To date, despite the work of a few intrepid musical Why would musicians care about working in explorers, the Web browser platform has not been the browser, a platform not specifically designed widely considered as a viable platform for the de- for computer music? Max/MSP is an example of a velopment of computer music. -
Rock Around Sonic Pi Sam Aaron, Il Live Coding E L’Educazione Musicale
Rock around Sonic Pi Sam Aaron, il live coding e l’educazione musicale Roberto Agostini IC9 Bologna, Servizio Marconi TSI (USR-ER) 1. Formazione “Hands-On” con Sam Aaron “Imagine if the only allowed use of reading and writing was to make legal documents. Would that be a nice world? Now, today’s programmers are all like that”1. In questa immagine enigmatica e un po’ provocatoria proposta da Sam Aaron nelle prime fasi di una sua recente conferenza è racchiusa un’originale visione della programmazione ricca di implicazioni, e non solo per l’educazione musicale. Ma andiamo con ordine: il 14 febbraio 2020, all’Opificio Golinelli di Bologna, Sam Aaron, creatore del software per live coding musicale Sonic Pi, è stato protagonista di un denso pomeriggio dedicato al pensiero computazionale nella musica intitolato “Rock around Sonic Pi”. L’iniziativa rientrava nell’ambito della “Formazione Hands-On” promossa dal Future Lab dell’Istituto Comprensivo di Ozzano dell’Emilia in collaborazione con il Servizio Marconi TSI dell’USR-ER. Oltre alla menzionata conferenza, aperta a tutti, Sam Aaron ha tenuto un laboratorio di tre ore a numero chiuso per i docenti delle scuole2. ● Presentazione e programma dettagliato della giornata “Rock Around Sonic Pi” (presentazione a cura di Rosa Maria Caffio). ● Ripresa integrale della conferenza di Sam Aaron (20.2.2020) (registrazione a cura dello staff dell’Opificio Golinelli). 1 “Immaginate che l’unico modo consentito di usare la lettura e la scrittura fosse quello di produrre documenti legali. Sarebbe un bel mondo? Ora, i programmatori di oggi sono nella stessa situazione”. -
Audio Visual Instrument in Puredata
Francesco Redente Production Analysis for Advanced Audio Project Option - B Student Details: Francesco Redente 17524 ABHE0515 Submission Code: PAB BA/BSc (Hons) Audio Production Date of submission: 28/08/2015 Module Lecturers: Jon Pigrem and Andy Farnell word count: 3395 1 Declaration I hereby declare that I wrote this written assignment / essay / dissertation on my own and without the use of any other than the cited sources and tools and all explanations that I copied directly or in their sense are marked as such, as well as that the dissertation has not yet been handed in neither in this nor in equal form at any other official commission. II2 Table of Content Introduction ..........................................................................................4 Concepts and ideas for GSO ........................................................... 5 Methodology ....................................................................................... 6 Research ............................................................................................ 7 Programming Implementation ............................................................. 8 GSO functionalities .............................................................................. 9 Conclusions .......................................................................................13 Bibliography .......................................................................................15 III3 Introduction The aim of this paper will be to present the reader with a descriptive analysis -
Pdates Actuator’S Outputs
M2 ATIAM – IM Graphical reactive programming Esterel, SCADE, Pure Data Philippe Esling [email protected] 1 M2 STL – PPC – UPMC First thing’s first Today we will see reactive programming languages • Theory • ESTEREL • SCADE • Pure Data However our goal is to see how to apply this to musical data (audio) and real-time constraints Hence all exercises are done with Pure Data • Pure data is open source, free and cross-platform • Works as Max/Msp (have almost all same features) • Can easily be embedded on UDOO cards (special distribution) So go now to download it and install it right away https://puredata.info/downloads/pure-data 2 M2 STL – PPC – UPMC Reactive programming: Basic notions Goals and aims Here we aim towards creating critical, reactive, embedded software. 3 M2 STL – PPC – UPMC Reactive programming: Basic notions Goals and aims Here we aim towards creating critical, reactive, embedded software. The mandatory notions that we should get first are • Embedded • Critical • Safety • Reactive • Determinism 4 M2 STL – PPC – UPMC Reactive programming: Basic notions Goals and aims Here we aim towards creating critical, reactive, embedded software. The mandatory notions that we should get first are ? • Embedded • Critical • Safety • Reactive • Determinism 5 M2 STL – PPC – UPMC Reactive programming: Basic notions Goals and aims Here we aim towards creating critical, reactive, embedded software. The mandatory notions that we should get first are • Embedded An embedded system is a computer • Critical system with a dedicated function • Safety within a larger mechanical or • Reactive electrical system, often with real- • Determinism time computing constraints. 6 M2 STL – PPC – UPMC Reactive programming: Basic notions Goals and aims Here we aim towards creating critical, reactive, embedded software. -
Kronos Reimagining Musical Signal Processing
Kronos Reimagining Musical Signal Processing Vesa Norilo March 14, 2016 PREFACE First of all, I wish to thank my supervisors; Dr. Kalev Tiits, Dr. Marcus Castrén and Dr. Lauri Savioja,thanks for guidanceand acknowledgements and some necessary goading. Secondly; this project would never have materialized without the benign influence of Dr Mikael Laurson and Dr Mika Kuuskankare. I learned most of my research skills working as a research assistant in the PWGL project, which I had the good fortune to join at a relatively early age. Very few get such a head start. Most importantly I want to thank my family, Lotta and Roi, for their love, support and patience. Many thanks to Roi’s grandparents as well, who have made it possible for us to juggle an improb- able set of props: freelance musician careers, album productions, trips around the world, raising a baby and a couple of theses on the side. This thesis is typeset in LATEX with the Ars Classica stylesheet generously shared by Lorenzo Pantieri. This report is a part of the portfolio required for the Applied Studies Program for the degree of Doctorthe applied of Music. It studies consists of an program introductory portfolio essay, supporting appendices and six internationally peer reviewed articles. The portfolio comprises of this report and a software package, Kronos. Kronos is a programming language development environment designed for musical signal processing. The contributions of the package include the specification and implementation of a compiler for this language. Kronos is intended for musicians and music technologists. It aims to facilitate creation of sig- nal processors and digital instruments for use in the musical context. -
Table of Contents Pure Data
Table of Contents Pure Data............................................................................................................................................................1 Real Time Graphical Programming..................................................................................................................2 Graphical Programming...........................................................................................................................2 Real Time.................................................................................................................................................3 What is digital audio? ........................................................................................................................................4 Frequency and Gain.................................................................................................................................4 Sampling Rate and Bit Depth..................................................................................................................4 Speed and Pitch Control..........................................................................................................................5 Volume Control, Mixing and Clipping....................................................................................................6 The Nyquist Number and Foldover/Aliasing...........................................................................................6 DC Offset.................................................................................................................................................7 -
A Comparison of Solenoid-Based Strategies for Robotic Drumming
A COMPARISON OF SOLENOID-BASED STRATEGIES FOR ROBOTIC DRUMMING Ajay Kapur 1,2,3 Trimpin Eric Singer2 Afzal Suleman1 George Tzanetakis1 Music Intelligence and Sound Technology Interdisciplinary Centre (MISTIC) 1 University of Victoria, Victoria, British Columbia, Canada League of Electronic Urban Music Robots (LEMUR) 2 Brooklyn, New York, USA KarmetiK Technology (A Division of KarmetiK LLC) 3 Reno, Nevada, USA ABSTRACT drums gives the students a more realistic paradigm for concentrated rehearsal. Solenoids are important components of robotic A number of different drumming robots have been drumming systems and several designs have been designed in the academic and artistic communities. proposed. In this paper, we compare different designs Researchers at Harvard University struggled to create an in terms of speed and dynamic range and discuss the accurate robotic drum roll [1], while next door tradeoffs involved. The evaluation is performed in the researchers at MIT developed Cog to control the context of MahaDeviBot, a custom built 12-armed MIDI number of times a stick can bounce [2]. Gil Weinberg controlled mechanical device that performs a variety of developed Haile to explore human to robot interaction Indian folk instruments, including frame-drums, bells, [3]. Mitsuo Kawato continues to develop hydraulic and shakers. To measure speed and dynamic range a systems for humanoid drumming [4]. Many artists have haptic robotic feedback system using piezo sensors was presented a number of different pieces including built. The evaluation methods presented are modular Baginsky’s “Thelxiapeia” for modified rototom [5], and can be administered to any hyperinstrument, new MacMurtie’s life size sculptures [6], Gordon Monohans interface or robotic system to inform composers about “Machine Matrix” [7], and Miles van Dorssen’s “Cell the strengths and limitation of different designs to guide Project” including an 8 octave Xylophone, Bamboo composition and performance.