Distributed Musical Decision-Making in an Ensemble of Musebots: Dramatic Changes and Endings

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Musical Decision-Making in an Ensemble of Musebots: Dramatic Changes and Endings Distributed Musical Decision-making in an Ensemble of Musebots: Dramatic Changes and Endings Arne Eigenfeldt Oliver Bown Andrew R. Brown Toby Gifford School for the Art and Design Queensland Sensilab Contemporary Arts University of College of Art Monash University Simon Fraser University New South Wales Griffith University Melbourne, Australia Vancouver, Canada Sydney, Australia Brisbane, Australia [email protected] [email protected] [email protected] [email protected] Abstract tion, while still allowing each musebot to employ different A musebot is defined as a piece of software that auton- algorithmic strategies. omously creates music and collaborates in real time This paper presents our initial research examining the with other musebots. The specification was released affordances of a multi-agent decision-making process, de- early in 2015, and several developers have contributed veloped in a collaboration between four coder-artists. The musebots to ensembles that have been presented in authors set out to explore strategies by which the musebot North America, Australia, and Europe. This paper de- ensemble could collectively make decisions about dramatic scribes a recent code jam between the authors that re- structure of the music, including planning of more or less sulted in four musebots co-creating a musical structure major changes, the biggest of which being when to end. that included negotiated dynamic changes and a negoti- This is in the context of an initial strategy to work with a ated ending. Outcomes reported here include a demon- stration of the protocol’s effectiveness across different distributed decision-making process where each author's programming environments, the establishment of a par- musebot agent makes music, and also contributes to the simonious set of parameters for effective musical inter- decision-making process. Questions that needed to be ad- action between the musebots, and strategies for coordi- dressed, then, included: nation of episodic structure and conclusion. • how each musebot should relate its decision-making to its music generation strategy; Introduction • how it should respond to the collective, updating both its future decisions and musical plan; Musebots are pieces of software that autonomously create music collaboratively with other musebots. A defining goal • what decision messages should be used; of the musebot project (Bown et al. 2015) is to establish a • whether decision-making agents should share common creative platform for experimenting with musical autono- code; my, open to people developing cutting-edge music intelli- • and whether decision-making agents should strictly gence, or simply exploring the creative potential of genera- conform to given agreements about the decision- tive processes in music. making process. A larger and longer-term goal for the project has been a We describe these explorations and their outcomes be- sharing of ideas about musebot programming, as well as low, but first provide a brief overview of the musebot re- the sharing of code. There already exists substantial re- search context to date. search into Musical Metacreation (MuMe) systems, with some impressive results. However, much of the creative work in this field is idiosyncratic, comprising ad hoc A Brief History of Musebot Ensembles standalone systems, and as a result the outcomes can be opaque. In such a diverse environment, it is difficult for The premiere musebots ensemble occurred in July 2015 as artistic researchers to share their ideas or their code, or an installation at the International Conference on Computa- work out ways that their systems might be incorporated tional Creativity (ICCC) in Park City, and was followed in into other’s creative workflows. Musebots, responding to August 2015 at the International Symposium of Electronic these challenges, are small modular units designed to be Art (ISEA) in Vancouver. Since then, it has been presented shared and studied by others. By making collaboration at the Generative Art Festival in Venice in December 2015, central, and agreeing on communications protocols be- the New Interfaces for Musical Expression (NIME) con- tween computational agents, the musebot project encour- ference in Brisbane in July 2016, and the Sound and Music ages developers to make transparent their system’s opera- Computing (SMC) conference in Hamburg in August 2016. The first musebot ensembles are more fully de- scribed elsewhere (Eigenfeldt et al. 2015), along with is- The gain value will be sent to the musebot after all sues and questions raised by these performances. musebots are loaded. This allows for rough mixing of The Chill-out Sessions – so named due to an initial de- musebot levels. A delay value, in seconds, will delay the sire to provide musebots as an alternative listening space to launching of that musebot by that length of time. Launch- the dance rhythms of Algoraves (Collins and McLean ing begins after the delay, and may take several seconds, so 2014) – have consisted of ensembles curated by the first it cannot be assumed that the musebot will begin playing at author from a growing pool of publicly shared musebots. that specific time. A kill value, in seconds, will cause the The musebot test suite1 currently has a repository of over Conductor to send a kill message to the musebot after that sixty shared musebots – including source code – by nine time once the musebot has been launched, taking into ac- different developers. count any delay. Thus, “delay 20 kill 20” will cause the musebot to launch with a delay of twenty seconds, then be Ensembles killed 20 seconds later. Combining delay and kill messages Curation of ensembles for installation has consisted of allow for the ensemble to dynamically vary during presen- combining musebots based upon their musical function. tation time. For example, several ensembles consist of one or more of the following: a beat musebot, a bass musebot, a pad Broadcasting Messages musebot, a melody musebot, and a harmony generating As mentioned, the Conductor also serves as a central hub musebot. A contrasting ensemble might involve combining through which messages are passed by the individual several noise musebots, or a grouping of only beat muse- musebots. Broadcast messages are general messages sent bots (see Table 1). The diversity of musebots is highlighted from one musebot to the ensemble, and include the ID of in their presentation: if listeners don’t find the current en- the originating musebot, the message type, and the data semble particularly interesting, they can wait five minutes (see Figure 1). and be presented with something completely different. Fig. 1. Musebot configuration for messaging. musebot_A Table 1. Musebot types available online Type Number available Bass Generators 5 Beat Generators 13 Harmony Generators 5 Keys/Pads Generators 6 Melody Generators 19 Noise/Texture Generators 16 sends a notepool message with its ID, and this message is Musebot ensembles are launched by a master Conductor, passed to the entire ensemble. whose function is also to provide a centralised timing source by broadcasting a running clock, as well as serving The Musebot conductor provides synchronisation (tim- as a central network hub through which all messages are ing) and message passing infrastructure, but beyond this broadcast (see below) via OSC (Wright 1997). A desire for musebot designers need to specify protocols of coordina- the musebot project is to be platform agnostic, so musebots tion. Our investigations focused on strategies for minimal are standalone applications (Mac and PC) that do not need effective musical coordination with minimal reliance on to run in the development environment. As a result, ‘top-down’ intervention. This is modeled on a conductor- launching musebot ensembles on a single computer does less small ensemble where independent agents (musicians) take some time, as individual audio applications are started agree on a few musical constraints (e.g., tempo, key, meter, up. genre) and then improvise around these. Ensembles are organized as text files, in the following An example message, given the musebot configuration format: in Figure 1 might be: tempo [BPM] duration [seconds] musebot_name message value… broadcast/notepool/musebot_A 60 62 65 67 68 musebot_name message value… … The information shared between musebots has tended to be surface detail, such as a current pool of pitches, density Messages currently used in the ensembles include: of onsets, and volume. For example, the harmony generat- • gain (0.0 - 1.0) ing musebots have been used to provide a generated chord • delay (in seconds) progression, sent as both pitch-class sets (independent of range) and notepool messages (which indicate specific • kill (in seconds). pitches). Musebots have used this information to constrain their choice of pitches, resulting in congruent harmony. 1 http://musicalmetacreation.org/musebot-test-suite/ Other musebots (usually the beat generators) have mes- saged their current onset density; musebots that respond to an ‘experimental prog rock’ performance. Each developer this message can decide to follow, or oppose, this density, worked in a different software environment (Pure Data, resulting in an audible interaction. Max, Extempore and Java) and were free to implement any To reiterate, the broadcast messages passed between algorithmic processes. Following discussion about possible musebots are not themselves defined in the specification, minimal coordinating parameters, we chose
Recommended publications
  • Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
    Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific
    [Show full text]
  • Tosca: an OSC Communication Plugin for Object-Oriented Spatialization Authoring
    ICMC 2015 – Sept. 25 - Oct. 1, 2015 – CEMI, University of North Texas ToscA: An OSC Communication Plugin for Object-Oriented Spatialization Authoring Thibaut Carpentier UMR 9912 STMS IRCAM-CNRS-UPMC 1, place Igor Stravinsky, 75004 Paris [email protected] ABSTRACT or consensus on the representation of spatialization metadata (in spite of several initiatives [11, 12]) complicates the inter- The paper presents ToscA, a plugin that uses the OSC proto- exchange between applications. col to transmit automation parameters between a digital audio This paper introduces ToscA, a plugin that allows to commu- workstation and a remote application. A typical use case is the nicate automation parameters between a digital audio work- production of an object-oriented spatialized mix independently station and a remote application. The main use case is the of the limitations of the host applications. production of massively multichannel object-oriented spatial- ized mixes. 1. INTRODUCTION There is today a growing interest in sound spatialization. The 2. WORKFLOW movie industry seems to be shifting towards “3D” sound sys- We propose a workflow where the spatialization rendering tems; mobile devices have radically changed our listening engine lies outside of the workstation (Figure 1). This archi- habits and multimedia broadcast companies are evolving ac- tecture requires (bi-directional) communication between the cordingly, showing substantial interest in binaural techniques DAW and the remote renderer, and both the audio streams and and interactive content; massively multichannel equipments the automation data shall be conveyed. After being processed and transmission protocols are available and they facilitate the by the remote renderer, the spatialized signals could either installation of ambitious speaker setups in concert halls [1] or feed the reproduction setup (loudspeakers or headphones), be exhibition venues.
    [Show full text]
  • Confessions-Of-A-Live-Coder.Pdf
    Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011 CONFESSIONS OF A LIVE CODER Thor Magnusson ixi audio & Faculty of Arts and Media University of Brighton Grand Parade, BN2 0JY, UK ABSTRACT upon writing music with programming languages for very specific reasons and those are rarely comparable. This paper describes the process involved when a live At ICMC 2007, in Copenhagen, I met Andrew coder decides to learn a new musical programming Sorensen, the author of Impromptu and member of the language of another paradigm. The paper introduces the aa-cell ensemble that performed at the conference. We problems of running comparative experiments, or user discussed how one would explore and analyse the studies, within the field of live coding. It suggests that process of learning a new programming environment an autoethnographic account of the process can be for music. One of the prominent questions here is how a helpful for understanding the technological conditioning functional programming language like Impromptu of contemporary musical tools. The author is conducting would influence the thinking of a computer musician a larger research project on this theme: the part with background in an object orientated programming presented in this paper describes the adoption of a new language, such as SuperCollider? Being an avid user of musical programming environment, Impromptu [35], SuperCollider, I was intrigued by the perplexing code and how this affects the author’s musical practice. structure and work patterns demonstrated in the aa-cell performances using Impromptu [36]. I subsequently 1. INTRODUCTION decided to embark upon studying this environment and perform a reflexive study of the process.
    [Show full text]
  • FAUST Tutorial for Functional Programmers
    FAUST Tutorial for Functional Programmers Y. Orlarey, S. Letz, D. Fober, R. Michon ICFP 2017 / FARM 2017 What is Faust ? What is Faust? A programming language (DSL) to build electronic music instruments Some Music Programming Languages DARMS Kyma 4CED MCL DCMP LOCO PLAY2 Adagio MUSIC III/IV/V DMIX LPC PMX AML Elody Mars MusicLogo POCO AMPLE EsAC MASC Music1000 POD6 Antescofo Euterpea Max MUSIC7 POD7 Arctic Extempore Musictex PROD Autoklang MidiLisp Faust MUSIGOL Puredata Bang MidiLogo MusicXML PWGL Canon Flavors Band MODE Musixtex Ravel CHANT Fluxus MOM NIFF FOIL Moxc SALIERI Chuck NOTELIST FORMES MSX SCORE CLCE Nyquist FORMULA MUS10 ScoreFile CMIX OPAL Fugue MUS8 SCRIPT Cmusic OpenMusic Gibber MUSCMP SIREN CMUSIC Organum1 GROOVE MuseData SMDL Common Lisp Outperform SMOKE Music GUIDO MusES Overtone SSP Common HARP MUSIC 10 PE Music Haskore MUSIC 11 SSSP Patchwork Common HMSL MUSIC 360 ST Music PILE Notation INV MUSIC 4B Supercollider Pla invokator MUSIC 4BF Symbolic Composer Csound PLACOMP KERN MUSIC 4F Tidal CyberBand PLAY1 Keynote MUSIC 6 Brief Overview to Faust Faust offers end-users a high-level alternative to C to develop audio applications for a large variety of platforms. The role of the Faust compiler is to synthesize the most efficient implementations for the target language (C, C++, LLVM, Javascript, etc.). Faust is used on stage for concerts and artistic productions, for education and research, for open sources projects and commercial applications : What Is Faust Used For ? Artistic Applications Sonik Cube (Trafik/Orlarey), Smartfaust (Gracia), etc. Open-Source projects Guitarix: Hermann Meyer WebAudio Applications YC20 Emulator Thanks to the HTML5/WebAudio API and Asm.js it is now possible to run synthesizers and audio effects from a simple web page ! Sound Spatialization Ambitools: Pierre Lecomte, CNAM Ambitools (Faust Award 2016), 3-D sound spatialization using Ambisonic techniques.
    [Show full text]
  • Implementing Stochastic Synthesis for Supercollider and Iphone
    Implementing stochastic synthesis for SuperCollider and iPhone Nick Collins Department of Informatics, University of Sussex, UK N [dot] Collins ]at[ sussex [dot] ac [dot] uk - http://www.cogs.susx.ac.uk/users/nc81/index.html Proceedings of the Xenakis International Symposium Southbank Centre, London, 1-3 April 2011 - www.gold.ac.uk/ccmc/xenakis-international-symposium This article reflects on Xenakis' contribution to sound synthesis, and explores practical tools for music making touched by his ideas on stochastic waveform generation. Implementations of the GENDYN algorithm for the SuperCollider audio programming language and in an iPhone app will be discussed. Some technical specifics will be reported without overburdening the exposition, including original directions in computer music research inspired by his ideas. The mass exposure of the iGendyn iPhone app in particular has provided a chance to reach a wider audience. Stochastic construction in music can apply at many timescales, and Xenakis was intrigued by the possibility of compositional unification through simultaneous engagement at multiple levels. In General Dynamic Stochastic Synthesis Xenakis found a potent way to extend stochastic music to the sample level in digital sound synthesis (Xenakis 1992, Serra 1993, Roads 1996, Hoffmann 2000, Harley 2004, Brown 2005, Luque 2006, Collins 2008, Luque 2009). In the central algorithm, samples are specified as a result of breakpoint interpolation synthesis (Roads 1996), where breakpoint positions in time and amplitude are subject to probabilistic perturbation. Random walks (up to second order) are followed with respect to various probability distributions for perturbation size. Figure 1 illustrates this for a single breakpoint; a full GENDYN implementation would allow a set of breakpoints, with each breakpoint in the set updated by individual perturbations each cycle.
    [Show full text]
  • The Viability of the Web Browser As a Computer Music Platform
    Lonce Wyse and Srikumar Subramanian The Viability of the Web Communications and New Media Department National University of Singapore Blk AS6, #03-41 Browser as a Computer 11 Computing Drive Singapore 117416 Music Platform [email protected] [email protected] Abstract: The computer music community has historically pushed the boundaries of technologies for music-making, using and developing cutting-edge computing, communication, and interfaces in a wide variety of creative practices to meet exacting standards of quality. Several separate systems and protocols have been developed to serve this community, such as Max/MSP and Pd for synthesis and teaching, JackTrip for networked audio, MIDI/OSC for communication, as well as Max/MSP and TouchOSC for interface design, to name a few. With the still-nascent Web Audio API standard and related technologies, we are now, more than ever, seeing an increase in these capabilities and their integration in a single ubiquitous platform: the Web browser. In this article, we examine the suitability of the Web browser as a computer music platform in critical aspects of audio synthesis, timing, I/O, and communication. We focus on the new Web Audio API and situate it in the context of associated technologies to understand how well they together can be expected to meet the musical, computational, and development needs of the computer music community. We identify timing and extensibility as two key areas that still need work in order to meet those needs. To date, despite the work of a few intrepid musical Why would musicians care about working in explorers, the Web browser platform has not been the browser, a platform not specifically designed widely considered as a viable platform for the de- for computer music? Max/MSP is an example of a velopment of computer music.
    [Show full text]
  • DVD Program Notes
    DVD Program Notes Part One: Thor Magnusson, Alex Click Nilson is a Swedish avant McLean, Nick Collins, Curators garde codisician and code-jockey. He has explored the live coding of human performers since such Curators’ Note early self-modifiying algorithmic text pieces as An Instructional Game [Editor’s note: The curators attempted for One to Many Musicians (1975). to write their Note in a collaborative, He is now actively involved with improvisatory fashion reminiscent Testing the Oxymoronic Potency of of live coding, and have left the Language Articulation Programmes document open for further interaction (TOPLAP), after being in the right from readers. See the following URL: bar (in Hamburg) at the right time (2 https://docs.google.com/document/d/ AM, 15 February 2004). He previously 1ESzQyd9vdBuKgzdukFNhfAAnGEg curated for Leonardo Music Journal LPgLlCe Mw8zf1Uw/edit?hl=en GB and the Swedish Journal of Berlin Hot &authkey=CM7zg90L&pli=1.] Drink Outlets. Alex McLean is a researcher in the area of programming languages for Figure 1. Sam Aaron. the arts, writing his PhD within the 1. Overtone—Sam Aaron Intelligent Sound and Music Systems more effectively and efficiently. He group at Goldsmiths College, and also In this video Sam gives a fast-paced has successfully applied these ideas working within the OAK group, Uni- introduction to a number of key and techniques in both industry versity of Sheffield. He is one-third of live-programming techniques such and academia. Currently, Sam the live-coding ambient-gabba-skiffle as triggering instruments, scheduling leads Improcess, a collaborative band Slub, who have been making future events, and synthesizer design.
    [Show full text]
  • 62 Years and Counting: MUSIC N and the Modular Revolution
    62 Years and Counting: MUSIC N and the Modular Revolution By Brian Lindgren MUSC 7660X - History of Electronic and Computer Music Fall 2019 24 December 2019 © Copyright 2020 Brian Lindgren Abstract. MUSIC N by Max Mathews had two profound impacts in the world of music ​ synthesis. The first was the implementation of modularity to ensure a flexibility as a tool for the user; with the introduction of the unit generator, the instrument and the compiler, composers had the building blocks to create an unlimited range of sounds. The second was the impact of this implementation in the modular analog synthesizers developed a few years later. While Jean-Claude Risset, a well known Mathews associate, asserts this, Mathews actually denies it. They both are correct in their perspectives. Introduction Over 76 years have passed since the invention of the first electronic general purpose computer,1 the ENIAC. Today, we carry computers in our pockets that can perform millions of times more calculations per second.2 With the amazing rate of change in computer technology, it's hard to imagine that any development of yesteryear could maintain a semblance of relevance today. However, in the world of music synthesis, the foundations that were laid six decades ago not only spawned a breadth of multifaceted innovation but continue to function as the bedrock of important digital applications used around the world today. Not only did a new modular approach implemented by its creator, Max Mathews, ensure that the MUSIC N lineage would continue to be useful in today’s world (in one of its descendents, Csound) but this approach also likely inspired the analog synthesizer engineers of the day, impacting their designs.
    [Show full text]
  • Bringing Csound to a Modern Production Environment
    Mark Jordan-Kamholz and Dr.Boulanger. Bringing Csound to a Modern Production Environment BRINGING CSOUND TO A MODERN PRODUCTION ENVIRONMENT WITH CSOUND FOR LIVE Mark Jordan-Kamholz mjordankamholz AT berklee.edu Dr. Richard Boulanger rboulanger AT berklee.edu Csound is a powerful and versatile synthesis and signal processing system and yet, it has been far from convenient to use the program in tandem with a modern Digital Audio Workstation (DAW) setup. While it is possible to route MIDI to Csound, and audio from Csound, there has never been a solution that fully integrated Csound into a DAW. Csound for Live attempts to solve this problem by using csound~, Max and Ableton Live. Over the course of this paper, we will discuss how users can use Csound for Live to create Max for Live Devices for their Csound instruments that allow for quick editing via a GUI; tempo-synced and transport-synced operations and automation; the ability to control and receive information from Live via Ableton’s API; and how to save and recall presets. In this paper, the reader will learn best practices for designing devices that leverage both Max and Live, and in the presentation, they will see and hear demonstrations of devices used in a full song, as well as how to integrate the powerful features of Max and Live into a production workflow. 1 Using csound~ in Max and setting up Csound for Live Rendering a unified Csound file with csound~ is the same as playing it with Csound. Sending a start message to csound~ is equivalent to running Csound from the terminal, or pressing play in CsoundQT.
    [Show full text]
  • (CCM)2 - College-Conservatory of Music Center for Computer Music, University of Cincinnati
    (CCM)2 - College-Conservatory of Music Center for Computer Music, University of Cincinnati Mara Helmuth, Director (CCM)2 (1) Michael Barnhart, Carlos Fernandes, Cheekong Ho, Bonnie Miksch (1) Division of Composition, History and Theory - College-Conservatory of Music, University of Cincinnati [email protected] [email protected] http://meowing.ccm.uc.edu Abstract The College-Conservatory of Music Center for Computer Music at the University of Cincinnati is a new environment for computer music composition and research. Composers create sound on powerful systems with signal processing and MIDI, with an excellent listening environment. The technical and aesthetical aspects of computer music can be studied in courses for composers, theorists and performers. Innovative research activity in granular synthesis, live performance interfaces and sound/animation connections is evolving, incorporating collaborative work with faculty in the School of Art. CCM has traditionally had a lively performance environment, and the studios are extending the capabilities of performers in new directions. Computer music concerts and other listening events by students, faculty and visiting composers are becoming regular occurrences. 1 Introduction video cables connect the studios and allow removal of noisy computer CPUs from the listening spaces. Fiber network connections will be installed for internet An amorphous quality based on many aspects of the access and the studio website. The studios will also be environment, including sounds of pieces being created, connected by fiber to a new studio theater, for remote personalities of those who work there, software under processing of sound created and heard in the theater. construction, equipment, layout and room design, and The theater will be equipped with a sixteen-channel architecture creates a unique studio environment.
    [Show full text]
  • Live Coding for Human-In- The-Loop Simulation
    Live coding for Human-in- the-Loop Simulation Ben Swift Research School of Computer Science Australian National University live coding the practice of writing & editing live programs Outline • Extempore: a software environment for live coding • Live demo: particle-in-Cell (PIC) simulation • Future directions: human-in-the-loop processing in simulation, modelling & decision support extempore • Open-source (MIT Licence) & available for OSX, Linux & Windows (http://github.com/digego/extempore) • Lisp-style syntax (Scheme-inspired) • High-performance compiled code (LLVM JIT) • Toll-free interop with C & Fortran • Hot-swappable at a function level programmer TCP extempore (local or remote) extempore Extempore code assembler & LLVM IR machine code any function can be redefined on-the-fly programmer extempore extempore extempore extempore extempore extempore extempore extempore extempore C/Fortran output main Extempore program C/Fortran output main extempore Extempore program changes main C/Fortran output init push solve extempore Extempore program changes main push C/Fortran output solve init extempore Extempore program changes main push C/Fortran output print init solve extempore Extempore program changes main push C/Fortran output print init solve extempore Extempore program changes main push C/Fortran output print init solve extempore Extempore program changes main push C/Fortran vis init solve extempore Extempore program changes main init push vis solve extempore The power of live programming • Change parameters on the fly, with feedback • Interactively add debug output (no loss of state) • Switch optimisers/solvers etc. on-the-fly (modularity in codebase & libraries helps) what does this have to do with DSI? Similarities • Numerical modelling (HPC-style problems) • High-dimensional, non-linear parameter spaces • Long-running jobs = long delays for feedback Opportunities • Joint simulation, experimentation and wargaming (e.g.
    [Show full text]
  • Alistair Riddell
    [email protected] [email protected] [email protected] http://www.alistairriddell.com au.linkedin.com/in/alistairriddell? https://www.researchgate.net https://independent.academia.edu/AlistairRiddell Alistair Riddell Brief Biography Over the past 40 years Melbourne born Alistair Riddell has been active as a musician, composer, performer, creative coder, installation artist, collaborator, educator, supervisor, writer and promoter of evolving digital creative practices. Beginning with a focus on music composition using technology in the 1980s, his interests have ranged widely over the digital domain where he developed particular interests in the processes of interaction between the creative mind and physical objects. He has spent considerable time experimenting with technology and ideas, and many of his completed works have been publicly presented in a diverse range of curated contexts. Alistair holds degrees in Music and Computer Science from La Trobe University and a PhD in music composition from Princeton University. He lectured in Sound Art and Physical Computing at the Australian National University after which he returned to Melbourne and has worked as a freelance artist/researcher collaborating on projects around Australia. 2 Education Princeton University (New Jersey, USA) Naumberg Fellowship 1993 PhD Thesis title: Composing the Interface 1991 Master of Fine Arts La Trobe University (Melbourne, Australia) 1989 Master of Arts Thesis title: A Perspective on the Acoustic Piano as a Performance Medium under Machine Control 1986 Post Graduate Diploma in Computer Science 1981 BA (Hons) Job History/Appointments/Projects (2000 onwards) Carillon Keyboard Project. National Capital Authority. Canberra. (October/November 2019) Collective Social Intelligence (@ foysarcade.com ) Research work (June 2017 – Nov 2019) Australian Catholic University.
    [Show full text]