Extreme Morphological and Ecological Homoplasy in Tropical Salamanders
Extreme morphological and ecological homoplasy in tropical salamanders Gabriela Parra-Olea* and David B. Wake† Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160 Contributed by David B. Wake, April 25, 2001 Fossorial salamanders typically have elongate and attenuated We analyzed sequences of mtDNA of many tropical bolito- heads and bodies, diminutive limbs, hands and feet, and extremely glossines, including all recognized genera, and determined that elongate tails. Batrachoseps from California, Lineatriton from east- Lineatriton and Oedipina are much more closely related to other ern Me´xico, and Oedipina from southern Me´xico to Ecuador, all taxa than to each other (3, 4). Not only was Lineatriton deeply members of the family Plethodontidae, tribe Bolitoglossini, resem- nested within the large, mainly Mexican genus Pseudoeurycea, ble one another in external morphology, which has evolved inde- but populations of Lineatriton from different parts of its geo- pendently. Whereas Oedipina and Batrachoseps are elongate be- graphic range were more closely related to different species of cause there are more trunk vertebrae, a widespread homoplasy Pseudoeurycea than to each other. Here we analyze molecular (parallelism) in salamanders, the genus Lineatriton is unique in data for 1,816 bp of mtDNA derived from three genes, reject the having evolved convergently by an alternate ‘‘giraffe-neck’’ de- monophyly of Lineatriton, and support an extraordinary case of velopmental program. Lineatriton has the same number of trunk homoplasy in a putative species that previously has been con- vertebrae as related, nonelongated taxa, but individual trunk sidered to be extremely specialized, and unique, in both mor- vertebrae are elongated.
[Show full text]