Between Sand Dunes and Hamadas:Environmental

Total Page:16

File Type:pdf, Size:1020Kb

Between Sand Dunes and Hamadas:Environmental sustainability Article Between Sand Dunes and Hamadas: Environmental Sustainability of the Thar Desert, West India Jiri Chlachula 1,2 1 Institute of Geoecology and Geoinformation, Adam Mickiewicz University, 61-680 Pozna´n,Poland; [email protected] 2 Environmental Research Centre, 686 03 Stare Mesto, Czech Republic; [email protected] Abstract: Extensive geographic areas of the world show a long-term atmospheric moisture deficit. Desertification of Rajasthan is concurrent with the strengthened weather extremality and mean annual air temperature (MAAT) rise over the western part of the Indian subcontinent. The present landscape aridification due to the precipitation decrease and reinforced windiness generates surface-cover dryness, aeolian erosion with a mass sediment transfer, salinity of excessively irrigated lands and groundwater depletion; altogether these pose major geo-environmental threats and settlement risks of the expanding Thar Desert. Livestock-overgrazing of sparse-vegetation contributes to ecological pressure to the fragile wasteland ecosystems with approximately three-quarters of the countryside affected to a certain extent by degradation and >50% exposed to wind erosion. Sand dune stabilisation by the drought-adapted tree plantation, the regional hydrology network regulation and the arid- land farming based on new xerophytic cultigens are the key land-use and mitigation strategies. Specific geomorphic palaeosettings predetermined patterned adaptive forms of the ancient desert inhabitation. Geo- and eco-tourism contributes to the arid-zone socioeconomic sustainability with regard to the rich natural and cultural heritage of the area. This study outlines the main effects of the current climate variations on the pristine and occupied lands of western Rajasthan, and the past and Citation: Chlachula, J. Between Sand present relief transformations, and reviews the modern anthropogenic responses to desertification. Dunes and Hamadas: Environmental Sustainability of the Thar Desert, Keywords: Rajasthan; climate change; aridification; sand dunes; environmental impact; landscape West India. Sustainability 2021, 13, degradation; settlement sustainability; geoheritage 3602. https://doi.org/10.3390/ su13073602 Academic Editor: Gabrijel Ondrasek 1. Introduction Received: 22 December 2020 Present aridification is a worldwide phenomenon threatening regional ecosystems Accepted: 3 March 2021 and economies [1–5]. The trends of globally progressing landscape dryness reflect the Published: 24 March 2021 changes in atmospheric circulation patterns, solar insolation and windiness contributing to regional climate continentality. The combination of these factors predetermines geomorphic Publisher’s Note: MDPI stays neutral landscape dynamics, groundwater resources and environmental sustainability. with regard to jurisdictional claims in The Thar Desert is the driest place of the arid zone of the NW Indian subcontinent published maps and institutional affil- (Figure1). Past geomorphic processes related to orogenesis and climate change acting iations. on this territory generated a diversity of landforms depending on the structural geology and bedrock intensity weathering and the resulting depositional bodies. Natural land- scapes have been changed by modern human activities modifying the original relief and contributing to the present environmental vulnerability and a loss of natural resilience. Copyright: © 2021 by the author. The ongoing desertification manifested by an increase of MAAT and a precipitation Licensee MDPI, Basel, Switzerland. decrease over most of NW India [6] triggers a mass, large-scale sediment transfer and This article is an open access article ground surface salinity (both severely affecting agrarian lands). These natural processes distributed under the terms and pose major threats to the local ecosystems and limitations to the rural occupation habitats. conditions of the Creative Commons In western Rajasthan, the annual rainfall is estimated to have dropped by ≈ 15% over the Attribution (CC BY) license (https:// past 100 years [7]. The sparse desert vegetation cover contributes to intensified windiness creativecommons.org/licenses/by/ and a large-scale sand transport generating an active dune-fields’ formation. 4.0/). Sustainability 2021, 13, 3602. https://doi.org/10.3390/su13073602 https://www.mdpi.com/journal/sustainability Sustainability 2021, 13, x FOR PEER REVIEW 2 of 16 Sustainability 2021, 13, 3602 2 of 16 past 100 years [7]. The sparse desert vegetation cover contributes to intensified windiness and a large-scale sand transport generating an active dune-fields’ formation. FigureFigure 1. GeographyGeography of of the the Thar Thar Desert Desert (West India–East Pakistan) (the satellite map by Google Earth). TheThe arid zone of NW India shows a differential degree of landscape degradation in termsterms of environmentalenvironmental stability,stability, natural natural restoration restoration capability capability and and socioeconomic socioeconomic sustain- sus- tainabilityability because because of the of variablythe variably co-acting co-acting adverse adverse natural natural and humanand human factors. factors. These These have havea direct a direct bearing bearing on the on inhabitability the inhabitability of the of traditional the traditional settlement settlement loci inloci the in desert. the desert. The Thesame same concerns concerns the climatically the climatically more more favourable favourable and densely and densely occupied occupied northern northern and eastern and easternareas of areas Rajasthan of Rajasthan receiving receiving an increased an increased annual rainfallannual rainfall (300–500 (300–500 mm) which mm) allowswhich foral- lowsan intensive, for an intensive, largely irrigation-basedlargely irrigation-based agricultural agricultural economy. economy. Presently, Presently, >5800 km>58002 of km the2 ofland the are land severely are severely degraded, degraded, 24,430 24,430 km2 degraded, km2 degraded, 73,740 73,740 km2 moderatelykm2 moderately degraded, degraded, and and526,900 526,900 km2 kmare2 slightlyare slightly degraded degraded [8]. [8]. The The unfavourable unfavourable landscape landscape shifts shifts are countermea-are counter- measuredsured by the by regionalthe regional land-management land-management strategies strategies that arethat aimed are aimed at securing at securing the ecological the eco- logicalstability stability of the state. of the The state. responding The respondi environmentalng environmental sustainability sustainability management management includes, includesamong other, among an other artificial an landscapeartificial landscape re-vegetation re-vegetation by planting byselected planting xerothermic selected xerother- bushes micand bushes trees, fixing and trees, the activated fixing the sand activated dune fields; sand dune implementation fields; implementation of a diversified of a land-use diversi- fiedpolicy, land-use mainly policy, promoting mainly adaptive promoting drought-resistant adaptive drought-resistant cultigens; and cultigens; the construction and the of con- the structionrainfall-water of the retention rainfall-water dams for retention year-round dams water for availability.year-round Thesewater ecologyavailability. precaution These ecologymeasures precaution against the measures progressing against regional the progressing aridification regional and thearidification large-scale and desert the large- sand scaletransfer desert are sand intended transfer to secure are intended future industrial to secure future growth industrial along with growth the long-term along with rising the long-termdemography rising particularly demography due partic to urbanisationularly due [ 9to]. urbanisation [9]. 2 Rajasthan,Rajasthan, as as the largest and most arid state of India (342,239(342,239 kmkm²),), experiences the majormajor social and economic challenges backed backed-up-up by increasing revenues from different sectorssectors (agriculture, mining, services, transp transportation,ortation, tourism), reflecting reflecting the improving livelihoodlivelihood conditions conditions of of the residents. The The expanding transport network has facilitated betterbetter accessibility accessibility to the marginal marginal pristine desert areas for development and trade, as well asas new new settlements settlements that that have have moved moved from from the the densely densely populated populated eastern eastern parts parts of of the the state. state. This progress, inin turn,turn, generatesgenerates serious serious environmental environmental threats threats due due to to the the rising rising population popula- (from ≈1 million to 30 million over the past 50 years, with the current ≈130 people/km2 population density) in the formerly sparsely populated western wasteland area. This leads to a gradual depletion of natural resources (mainly ground water and arable land). At present, about 80% of western Rajasthan is affected by a certain form of land degradation; Sustainability 2021, 13, x FOR PEER REVIEW 3 of 16 tion (from ≈ 1 million to 30 million over the past 50 years, with the current ≈ 130 peo- ple/km2 population density) in the formerly sparsely populated wasteland area. This leads to a gradual depletion of natural resources (mainly ground water and arable land). At present, about 80 % of western Rajasthan is affected by a certain form of land degradation; >73 % is subjected to wind erosion and sand dune deposition [10] (Figures 2 and 3). Veg- etation retreat,
Recommended publications
  • Sand Dune Systems in Iran - Distribution and Activity
    Sand Dune Systems in Iran - Distribution and Activity. Wind Regimes, Spatial and Temporal Variations of the Aeolian Sediment Transport in Sistan Plain (East Iran) Dissertation Thesis Submitted for obtaining the degree of Doctor of Natural Science (Dr. rer. nat.) i to the Fachbereich Geographie Philipps-Universität Marburg by M.Sc. Hamidreza Abbasi Marburg, December 2019 Supervisor: Prof. Dr. Christian Opp Physical Geography Faculty of Geography Phillipps-Universität Marburg ii To my wife and my son (Hamoun) iii A picture of the rock painting in the Golpayegan Mountains, my city in Isfahan province of Iran, it is written in the Sassanid Pahlavi line about 2000 years ago: “Preserve three things; water, fire, and soil” Translated by: Prof. Dr. Rasoul Bashash, Photo: Mohammad Naserifard, winter 2004. Declaration by the Author I declared that this thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. Hamidreza Abbasi iv List of Contents Abstract ................................................................................................................................................. 1 1. General Introduction ........................................................................................................................ 7 1.1 Introduction and justification ........................................................................................................
    [Show full text]
  • A Mesolithic Site in the Thal Desert of Punjab (Pakistan)
    Asian Archaeology https://doi.org/10.1007/s41826-019-00024-z FIELD WORK REPORT Mahi Wala 1 (MW-1): a Mesolithic site in the Thal desert of Punjab (Pakistan) Paolo Biagi 1 & Elisabetta Starnini2 & Zubair Shafi Ghauri3 Received: 4 April 2019 /Accepted: 12 June 2019 # Research Center for Chinese Frontier Archaeology (RCCFA), Jilin University and Springer Nature Singapore Pte Ltd. 2019 1Preface considered by a few authors a transitional period that covers ca two thousand years between the end of the Upper The problem of the Early Holocene Mesolithic hunter-gatherers Palaeolithic and the beginning of the Neolithic food producing in the Indian Subcontinent is still a much debated topic in the economy (Misra 2002: 112). The reasons why our knowledge prehistory of south Asia (Lukacs et al. 1996; Sosnowska 2010). of the Mesolithic period in the Subcontinent in general is still Their presence often relies on knapped stone assemblages insufficiently known is due mainly to 1) the absence of a de- characterised by different types of geometric microlithic arma- tailed radiocarbon chronology to frame the Mesolithic com- tures1 (Kajiwara 2008: 209), namely lunates, triangles and tra- plexes into each of the three climatic periods that developed pezes, often obtained with the microburin technique (Tixier at the beginning of the Holocene and define a correct time-scale et al. 1980; Inizan et al. 1992; Nuzhniy 2000). These tools were for the development or sequence of the study period in the area first recorded from India already around the end of the (Misra 2013: 181–182), 2) the terminology employed to de- nineteenth century (Carleyle 1883; Black 1892; Smith scribe the Mesolithic artefacts that greatly varies author by au- 1906), and were generically attributed to the beginning thor (Jayaswal 2002), 3) the inhomogeneous criteria adopted of the Holocene some fifty years later (see f.i.
    [Show full text]
  • My Life with the Taliban
    MY LIFE WITH THE TALIBAN Courtesy of www.pdfbooksfree.pk ABDUL SALAM ZAEEF My Life with the Taliban Edited by Alex Strick van Linschoten and Felix Kuehn Courtesy of www.pdfbooksfree.pk Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © Abdul Salam Zaeef 2010 Editors’ introduction and translation Copyright © Alex Strick van Linschoten and Felix Kuehn, 2010 Foreword Copyright © Barnett R. Rubin, 2010 All rights reserved Library of Congress Cataloging-in-Publication Data Za’if, ‘Abd al-Salam, 1967 or 8– My life with the Taliban / Abdul Salam Zaeef. p. cm. Includes bibliographical references and index. ISBN 978-0-231-70148-8 (alk. paper) 1. Za’if, ‘Abd al-Salam, 1967 or 8– 2. Taliban—Biography. 3. Afghan War, 2001—Biography. 4. Prisoners of war—Afghanistan—Biography. 5. Prisoners of war—United States—Biography. 6. Guantánamo Bay Detention Camp—Biography. I. Title. DS371.33.Z34A3 2010 958.104'7—dc22 [B] 2009040865 ∞ Columbia University Press books are printed on permanent and durable acid-free paper. This book is printed on paper with recycled content. Printed in USA c 10 9 8 7 6 5 4 3 2 1 References to Internet Web sites (URLs) were accurate at the time of writing. Neither the author nor Columbia University Press is responsible for URLs that may have expired or changed since the manuscript was prepared. Courtesy of www.pdfbooksfree.pk CONTENTS Kandahar: Portrait of a City ix Editors’ Acknowledgements xxv Editors’ Notes xxvii Character List xxix Foreword by Barnett R. Rubin xxxvii Preface by Abdul Salam Zaeef xli Maps xlviii–xlix 1.
    [Show full text]
  • The Amazing Life in the Indian Desert
    THE AMAZING LIFE IN THE INDIAN DESERT BY ISHWAR PRAKASH CENTRAL ARID ZONE RESEARCH INSTITUTE JODHPUR Printed June, 1977 Reprinted from Tbe Illustrated Weekly of India AnDual1975 CAZRI Monogra,pp No. 6 , I Publtshed by the Director, Central Arid Zone Research Institute, Jodhpur, and printed by B. R. Chowdhri, Press Manager at Hl!ryana Agricultural University Press, Hissar CONTENTS A Sorcerer's magic wand 2 The greenery is transient 3 Burst of colour 4 Grasses galore 5 Destruction of priceless teak 8 Exciting "night life" 8 Injectors of death 9 Desert symphony 11 The hallowed National Bird 12 The spectacular bustard 12 Flamingo city 13 Trigger-happy man 15 Sad fate of the lord of the jungle 16 17 Desert antelopes THE AMAZING LIFE IN THE INDIAN DESERT The Indian Desert is not an endless stretch of sand-dunes bereft of life or vegetation. During certain seasons it blooms with a colourful range of trees and grasses and abounds in an amazing variety of bird and animal life. This rich natural region must be saved from the over­ powering encroachment of man. To most of us, the word "desert" conjures up the vision of a vast, tree-less, undulating, buff expanse of sand, crisscrossed by caravans of heavily-robed nomads on camel-back. Perhaps the vision includes a lonely cactus plant here and the s~ull of some animal there and, perhaps a few mini-groves of date-palm, nourished by an artesian well, beckoning the tired traveller to rest awhile before riding off again to the horizon beyond. This vision is a projection of the reality of the Saharan or the Arabian deserts.
    [Show full text]
  • Automated Detection of Archaeological Mounds Using Machine-Learning Classification of Multisensor and Multitemporal Satellite Data
    Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data Hector A. Orengoa,1, Francesc C. Conesaa,1, Arnau Garcia-Molsosaa, Agustín Lobob, Adam S. Greenc, Marco Madellad,e,f, and Cameron A. Petriec,g aLandscape Archaeology Research Group (GIAP), Catalan Institute of Classical Archaeology, 43003 Tarragona, Spain; bInstitute of Earth Sciences Jaume Almera, Spanish National Research Council, 08028 Barcelona, Spain; cMcDonald Institute for Archaeological Research, University of Cambridge, CB2 3ER Cambridge, United Kingdom; dCulture and Socio-Ecological Dynamics, Department of Humanities, Universitat Pompeu Fabra, 08005 Barcelona, Spain; eCatalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain; fSchool of Geography, Archaeology and Environmental Studies, The University of the Witwatersrand, Johannesburg 2000, South Africa; and gDepartment of Archaeology, University of Cambridge, CB2 3DZ Cambridge, United Kingdom Edited by Elsa M. Redmond, American Museum of Natural History, New York, NY, and approved June 25, 2020 (received for review April 2, 2020) This paper presents an innovative multisensor, multitemporal mounds (7–9). Georeferenced historical map series have also machine-learning approach using remote sensing big data for been used solely or in combination with contemporary declas- the detection of archaeological mounds in Cholistan (Pakistan). sified data (10–14). In recent years, RS-based archaeological The Cholistan Desert presents one of
    [Show full text]
  • Chapter 21C. Geohydrologic Summary of the Khanneshin Carbonatite Area of Interest
    Chapter 21C. Geohydrologic Summary of the Khanneshin Carbonatite Area of Interest By Michael P. Chornack and Thomas J. Mack 21C.1 Introduction This chapter describes the geohydrology of the Khanneshin carbonatite area of interest (AOI) in Afghanistan identified by Peters and others (2007). The AOI occupies 7,771 km2 (square kilometers) and is located primarily in the Dishu, Garmser, and Reg Districts of Helmand Province (fig. 21C–1a,b). A small area of the northwestern most part of the AOI, about 20 km2, is in the Chahar Burja District of Nimroz Province. The Khanneshin volcano is a topographic high formed by extrusive volcanic rocks in the center of the AOI (fig. 21C–1a). The Khanneshin volcano is approximately 9.5 km (kilometers) south of the Helmand River. The AOI is in the western part of the Registan (land of sand), an area that is characterized by active dunes (Whitney, 2006). Lashkar Gah, the Helmand Province center, is approximately 130 km northeast of the AOI. Water is needed not only to process mineral resources in Afghanistan, but also to supply existing communities and the associated community growth that may accompany a developing mining economy. Information on the climate, vegetation, topography, and demographics of the AOI is summarized to provide information on the seasonal availability of, and seasonal demands for, water. The geohydrology of the AOI is described through the use of maps of streams and irrigated areas, generalized geohydrology and topography, and well locations. The results of lineament analyses are presented to identify areas where the rock may be more fractured than in other areas, which may be an indicator of high relative water yield and storage in bedrock aquifers.
    [Show full text]
  • Biodiversity Profile of Afghanistan
    NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores
    [Show full text]
  • Desert-2.Pdf
    Desert Contens Top Ten Facts PG 1 front cover 1 All Deserts are all different but they all have low amounts of rain PG 2 contens 2 Deserts normally have less than 40 CM a year 3 The Sahara desert is in Northern Africa and is over 12 different countries PG 3 top ten facts 4 Sahara desert is the largest desert in the Earth PG 4 whether and climate 5 Only around 20% of the Deserts on Earth are covered in sand 6 Around one third of the Earth's surface is covered in Desert PG 5 desert map 7 The largest cold Desert on Earth is Antarctica PG 6 animals and people that live there 8 Located in South America, the Atacama Desert is the driest place in the world PG 7 what grows there 9 Lots of animals live in Deserts such as the wild dog 10 The Arabian Desert in the Middle East is the second largest hot desert on Earth but is substantially smaller than the Sahara. This is a list of the deserts in Wether And Climate the world Arabian Desert. ... Kalahari Desert. ... Wether Mojave Desert. ... Sonoran Desert. ... Chihuahuan Desert. ... This is a map showing Deserts are usually very, very dry. Even the wettest deserts get less than ten Thar Desert. ... the deserts in the world inches of precipitation a year. In most places, rain falls steadily throughout the Gibson Desert. year. But in the desert, there may be only a few periods of rains per year with a lot of time between rains.
    [Show full text]
  • Eartharxiv Coversheet
    1 EarthArXiv Coversheet 2 Authors 1;| 2 2 3 4 1;5;♠ 3 Andrew Gunn , Giampietro Casasanta , Luca Di Liberto , Federico Falcini , Nicholas Lancaster & Douglas J. Jerolmack 4 Affiliations 1 5 Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, USA 2 6 Institute of Atmospheric Sciences and Climate - National Research Council of Italy (CNR-ISAC), Rome, Italy 3 7 Institute of Marine Science - National Research Council of Italy (CNR-ISMAR), Rome, Italy 4 8 Earth & Ecosystem Sciences, Desert Research Institute, Reno, USA 5 9 Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, USA 10 Emails | 11 [email protected] ♠ 12 [email protected] 13 Peer-review statement 14 This manuscript is not peer-reviewed. 15 What sets aeolian dune height? 1 2 2 3 16 Andrew Gunn , Giampietro Casasanta , Luca Di Liberto , Federico Falcini , Nicholas 4 1,5,* 17 Lancaster , and Douglas J. Jerolmack 1 18 Department of Earth & Environmental Sciences, University of Pennsylvania, Philadelphia, USA 2 19 Institute of Atmospheric Sciences and Climate - National Research Council of Italy (CNR-ISAC), Rome, Italy 3 20 Institute of Marine Science - National Research Council of Italy (CNR-ISMAR), Rome, Italy 4 21 Earth & Ecosystem Sciences, Desert Research Institute, Reno, USA 5 22 Department of Mechanical Engineering & Applied Mechanics, University of Pennsylvania, Philadelphia, USA * 23 e-mail: [email protected] 24 ABSTRACT Wherever a loose bed of sand is subject to sufficiently strong winds, aeolian dunes form at wavelengths and growth rates that are well predicted by linear stability theory1–3. As dunes mature and coarsen, however, their growth trajectories become more idiosyncratic; nonlinear effects1, sediment supply4, wind variability5 and geologic constraints6,7 become increasingly relevant, resulting in complex and history-dependent dune amalgamations.
    [Show full text]
  • Class 3 Social Science Chapter- 5 Our Beautiful Country Content-1 Landforms of India
    CLASS 3 SOCIAL SCIENCE CHAPTER- 5 OUR BEAUTIFUL COUNTRY CONTENT-1 LANDFORMS OF INDIA LANDFORMS OF INDIA HILLS AND PLAINS PLATEAUS DESERTS ISLANDS MOUNTAINS MAJOR LANDFORMS AND RIVERS OF INDIA HILLS AND MOUNTAINS • A high land with a round top is called a hill . The Vindhya Ranges in central India and the Nilgiri Hills in south India are examples of hills. • Very high hills with sharp tops (peaks) are called mountains . The Himalayan Mountain Ranges in the north is a example of mountains. • The Himalayan Mountain Ranges lie in the north. There are many peaks in these mountains. In mountain regions, it is cold throughout the year. • Mount Everest, on the Nepal-China border, is the highest peak in the Himalayan mountain ranges as well as in the world. Many rivers such as the Ganga, Yamuna, Satluj and Brahmaputra originate in these mountains and flow down to the plains. These rivers are formed by the melting snow. THE HIMALAYAS ARE THE HIGHEST MOUNTAIN RANGE IN THE WORLD PLAINS • Flat and level land is called a plain . To the south of Himalayas lie the Great Plains of India. In the plains, summers are hot and winters are cold. Rivers such as the Ganga and the Yamuna flow through these plains. These rivers have made the sofiel rtile . As a result, many crops are grown here. • There is a narrow strip of flat land along the eastern and the western coasts of India. It is known as the Eastern Coastal Plain and the Western Coastal Plain. These plains meet at Kanniyakumari. Rivers such as the Narmada, Tapi, Mahanadi, Godavari, Krishna and Kaveri flow through these plains and fall into the sea.
    [Show full text]
  • Studies on the Productive Potential and Conservation Strategy of Major Range Grasses in the Degrading Range Lands of Cholistan Desert
    STUDIES ON THE PRODUCTIVE POTENTIAL AND CONSERVATION STRATEGY OF MAJOR RANGE GRASSES IN THE DEGRADING RANGE LANDS OF CHOLISTAN DESERT By MUHAMMAD RAFAY M.sc (Hons.) FORESTRY A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN FORESTRY DEPARTMENT OF FORESTRY, RANGE MANAGEMENT AND WILDLIFE FACULTY OF AGRICULTURE UNIVERSITY OF AGRICULTURE FAISALABAD PAKISTAN 2012 DECLARATION I hereby declare that the contents of the thesis “Studies on the productive potential and conservation strategy on the major range grasses in degrading rangelands of Cholistan desert” are the product of my own research and no part has been copied from any published source (except the references, standard mathematical or genetic models/ equations/ formulae/ protocols etc). I further declare that this work has not been submitted for award of any other degree/ diploma. The University may take action if the information provided is found inaccurate at any stage. In case of any fault, the scholar will be proceeded against as per HEC plagiarism policy. MUHMMAD RAFAY 2001-ag-1152 The Controller of Examination, University of Agriculture, Faisalabad. We, the Supervisory Committee, certify that the contents and form of the thesis submitted by Mr. Muhammad Rafay (Reg. No. 2001-ag-1152) have been found satisfactory and recommend that it be processed for evaluation by External Examiner(s) for the award of degree. SUPERVISORY COMMITTEE 1. Chairman ---------------------------------------------- (Prof. Dr. Rashid Ahmad Khan) 2. Member ---------------------------------------------- (Dr. Shahid Yaqoob) 3. Member ----------------------------------------------- (Prof. Dr. Munir Ahmad) DEDICATION To My Affable Father A symbol of success for me, Always behave me like a friend Whose mature, valuable, guidance, Financial assistance, enabled me to perceive and pursue higher ideas in life My Adorable Mother A minerate of love, affection, and kindness Who enlightened me A learning spirit I am learning much From her lap till now.
    [Show full text]
  • Palaeochannels of the Thar Desert May Bring Prosperity for Its Inhabitants, Rajasthan, Nw India
    PALAEOCHANNELS OF THE THAR DESERT MAY BRING PROSPERITY FOR ITS INHABITANTS, RAJASTHAN, NW INDIA. S.R. Jakhar Department of Geology, Faculty of Engineering, Jai Narain Vyas University, Jodhpur, Rajasthan, India [email protected] KEY WORDS: River Linking, Former Courses, Forestation, Precipitation. ABSTRACT: The Thar Desert exists mainly in western part of the Rajasthan state of northwestern part of India. The state occupies an area about two third of the total area of the desert. Because of scarcity of rain fall in the desert, the frequency of occurrence of draughts is very high. The inhabitants of the desert are bound to migrate in search of water, food and fodder frequently. There are a number of palaeochannels exist in the Thar Desert of the western Rajasthan. The presence of these palaeochannels have been proved through study of remote sensing imageries and it is inferred that sometime in the past a very mighty Himalayan river and its tributaries were flowing through western Rajasthan and meeting Arabian Sea. India plans to transfer water from the water surplus regions of the north and north-east to the water scarce regions of western and southern India. The plan is called the National River Linking Project (NRLP). If the rivers of Himalaya are linked to Palaeochannel of the Thar Desert through canals, it will thrust up the economic condition of desert residents by increase of crop sowing area, tree plantation and fish production from aqua-culture. When water will flow through these pre-existing river courses in the desert, it will be available for irrigation, forestation, cultivation of grasses, aqua-culture, drinking and for industrial supply.
    [Show full text]