Remote Sensing and GIS for Hydrology and Water Resources (IAHS Publ. 368, 2015) 221 (Proceedings RSHS14 and ICGRHWE14, Guangzhou, China, August 2014). Simulating hydrological processes in a sub-basin of the Mekong using GBHM and RS data WEI WANG1, HUI LU1,2, DAWEN YANG3, BIN GAO4, YANG JIAO3 & 5 ZHIGUO PANG 1 Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, 100084, China 2 Joint Center for Global Change Studies, Beijing, 100875, China.
[email protected] 3 Department of Hydraulic Engineering, Tsinghua University, Beijing, 100084, China 4 School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China 5 Remote Sensing Center, Institute of Water Resources and Hydropower Research, Beijing, 100044, China Abstract This paper presents simulations of daily hydrological process of the Mun River, the largest tributary of the Mekong, with a geomorphology-based hydrological model (GBHM) driven by two forcing sets: traditional station data and grid data derived from remote sensing and GLDAS products. Driven by the station data, the Mun-GBHM model is successfully calibrated against the discharge observed in 1991, but the model accuracy decreases with the increase of simulation time during the validation period of 1992–1999. Driven by the TRMM rainfall and other meteorological data from GLDAS, using the same parameters as above, the model performs reliably at both the monthly and daily scale. Moreover, when the model is calibrated with one year of gridded data, its performance can be further improved. Our results demonstrate that TRMM and GLDAS are able to drive the GBHM so providing reliable hydrologic predictions in such data-poor or ungauged basins.