Regulation of Spermatogonial Stem Cell Self-Renewal and Spermatocyte Meiosis by Sertoli Cell Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Spermatogonial Stem Cell Self-Renewal and Spermatocyte Meiosis by Sertoli Cell Signaling REPRODUCTIONREVIEW Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling Su-Ren Chen and Yi-Xun Liu State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China Correspondence should be addressed to Y-X Liu; Email: [email protected] Abstract Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special ‘niche’ microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood–testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF–RET–GFRA1 signaling, FGF2–MAP2K1 signaling, CXCL12–CXCR4 signaling, CCL9–CCR1 signaling, FSH–nociceptin/OPRL1, retinoic acid/FSH–NRG/ERBB4, and AR/RB–ARID4A/ARID4B) are also addressed. Reproduction (2015) 149 R159–R167 Introduction (see Fig. 1). Although PLZF (Costoya et al. 2004), SALL4 (Gassei & Orwig 2013), and CDH1 (Tokuda et al. 2007) Spermatogenesis is precisely controlled by intrinsic gene are expressed in all undifferentiated A-spermatogonia expression and extrinsic stimuli, as shown by many loss- at all stages, GFRA1 (Grasso et al. 2012), LIN28 (Zheng and gain-of-function studies. Spermatogonial stem cells et al. 2009), NANOS2 (Suzuki et al. 2009), and NGN3 (SSCs) are undifferentiated spermatogonia that maintain (Yoshida et al. 2004) are primarily expressed in specific the potential to self-renew and differentiate into types of undifferentiated A-spermatogonia. In addition, committed progenitors, which sustains spermatogenesis ID4 and PAX7 are specific to type Asingle spermatogonia (Kanatsu-Shinohara & Shinohara 2013). Although self- (Oatley et al. 2011, Aloisio et al. 2014). NANOS3 is renewal through cell division continues through the life detectable in most undifferentiated type A-spermatogo- of the organism, little is known about how germline cells nia and differentiating type A1 spermatogonia (Suzuki acquire and maintain their self-renewal activity. In mice, et al. 2009). c-KIT, a tyrosine kinase receptor for KITL, is SSCs (A ) and committed progenitor spermatogonia single expressed in some type Aaligned spermatogonia, differ- (Apaired and Aaligned) are collectively described as entiating spermatogonia, and the earliest preleptotene undifferentiated A-spermatogonia based on morpho- spermatocytes (Yoshinaga et al. 1991). SOHLH1 and logical analyses (Clermont & Bustos-Obregon 1968). SOHLH2 are expressed in both c-KIT-negative and c-KIT- C These undifferentiated A-spermatogonia undergo a series positive spermatogonia, with the exception of GFRA1 of cell divisions to form differentiating spermatogonia spermatogonia (Suzuki et al. 2012). PLZF is the first (A1, A2, A3, A4, intermediate, and B spermatogonia) transcription factor to be identified as being involved in before entering meiosis (de Rooij 2001; see Fig. 1). The SSC self-renewal. SALL4 functions by removing PLZF SSCs are defined by their ability to self-renew, and it is from its cognate targets (e.g. c-KIT). Thus, the compe- difficult to distinguish them from the more abundant tition between PLZF and SALL4 is an important topic of committed progenitors based on only morphology investigation. It has been recently shown by Liao et al. alone. Several well-defined markers can be used to (2014) that reduced levels of PLZF in Dnmt3l-knockout C identify SSCs and other undifferentiated spermatogonia Thy1 cells results in the releases of the PLZF antagonist q 2015 Society for Reproduction and Fertility DOI: 10.1530/REP-14-0481 ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org Downloaded from Bioscientifica.com at 09/25/2021 01:45:23PM via free access R160 S-R Chen and Y-X Liu understand why spermatogenesis is negatively affected onia Self-renewal g by heat. Our previous studies demonstrated that PAX7 ID4 GFRA1 NANOS2 LIN28 NGN3 PLZF CDH1 SALL4 NANOS3 A SOHLH1/2 SSCs single temporal heat stress in the testes resulted in a dramatic A Progenitor spermatogonia = paired c-KIT reduction in the expression of upstream factors, such as A aligned (4–16) A androgen receptor (AR), Wilms’ tumor gene 1 (WT1), 1 (16) A 2 (32) and liver receptor homolog 1 (LHR1) in monkey (Zhang A Differentiating spermatogonia = 3 (64) A Undifferentiated A-spermato et al. 2006, Guo et al. 2007, Chen et al. 2008), rat (Guo 4 (128) Int (256) et al. 2007), and mouse (Cai et al. 2011); however, these B (512) Leptotene effects were reversible. The reversible dedifferentiation Spermatocytes (prophase l) = Distinguishing marker of spermatogonia of Sertoli cells is followed by a temporary reversible disruption of the blood–testis barrier (BTB), which leads Figure 1 Characteristics of mammalian spermatogonial development and protein markers of SSCs. Whether SSC division is a symmetric or to dramatic germ cell apoptosis in the testis (Lue et al. asymmetric process in mammals remains a topic of debate. Regardless 2006). Importantly, heat-induced changes in Sertoli cells of division pathways, SSCs undergo either self-renewal, to maintain and the failed spermatogenesis were found to recover a pool of SSCs, or differentiation, committing to differentiating into over time. Upstream factors may act as transcription spermatogonia and then entering meiosis. A number of well-defined factors to regulate the reversible change in Sertoli cell markers of SSCs in the mammalian germline have been summarized, of differentiation and the process of spermatogenesis via which ID4 and PAX7 selectively mark type Asingle spermatogonia. BTB-associated proteins. For example, when the AR was Undifferentiated type A-spermatogonia may be basically classified into C C K K C three categories: GFRA1 NANOS2 LIN28 NGN3 , GFRA1 over-expressed, the heat-induced downregulation of C C K K K K C NANOS2 LIN28 NGN3 , and GFRA1 NANOS2 LIN28 NGN3 BTB-associated proteins was rescued. AR knockdown (Suzuki et al. 2009). The dashed and colored arrows indicate the period by RNA interference (RNAi) or treatment with an AR of expression. The succession of the various types of germ cells during antagonist (flutamide) inhibited the recovery of BTB- the early stage of mouse spermatogenesis is represented in the image: associated proteins. Furthermore, the co-localization Asingle, a single spermatogonia; Apaired, a paired spermatogonia; and interactions of components of partitioning-defective Aaligned, an aligned spermatogonia; A1,A2,A3,A4, types A1–A4 spermatogonia; Int, intermediate spermatogonia; B, type B protein 6 (PAR6)-PAR3-aPKC-Cdc42 polarity complex spermatogonia. components were disrupted in both AR-knockdown and heat-treated Sertoli cells (see Fig. 2; Li et al. 2013). Our SALL4, which is associated with maintaining the delicate study suggests that a small number of undifferentiated balance of cycling and quiescent SSCs/progenitor cells. spermatogonia survival in the disrupted niche after heat C Further study is required to investigate whether SALL4 / treatment and the SSC niche and BTB are re-established K PLZF A and A spermatogonia are destined to after the heat stress is withdrawn. Sertoli cells, which are single paired the principal contributors to the SSC niche and the BTB differentiate. The human ortholog of the mouse SSC structure, play a central role in both the disruption and maintenance factor PLZF is expressed in spermatogonia, recovery process. Absalan et al. (2011) demonstrated and its biallelic loss in humans is associated with genital that spermatogonia isolated from bilateral cryptorchid hypoplasia (Fischer et al. 2008). To our knowledge, PAX7 mice have the ability to regenerate spermatogenesis. is the only protein known to be expressed in SSCs in a Based on these findings, we support the notion that variety of mammals, including human. Further studies spermatogenesis is regulated by a complex paracrine are needed to identify additional markers of human SSCs and endocrine system within a structurally well- and other undifferentiated spermatogonia. It is also organized tissue. Central to this system are the Sertoli important to test the classic studies of SSCs through cells, which provide nutrient and structural support for spermatogonial transplantation techniques and other the differentiating germ cells. functional SSCs assays. In this review, we summarize findings regarding the Meiosis is essential for the production of haploid paracrine regulation of SSC self-renewal and spermato- gametes from spermatocytes and maintaining genome cyte meiosis by Sertoli cells. The well-defined
Recommended publications
  • Supplementary Data
    Figure 2S 4 7 A - C 080125 CSCs 080418 CSCs - + IFN-a 48 h + IFN-a 48 h + IFN-a 72 h 6 + IFN-a 72 h 3 5 MRFI 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 7 B 13 080125 FBS - D 080418 FBS - + IFN-a 48 h 12 + IFN-a 48 h + IFN-a 72 h + IFN-a 72 h 6 080125 FBS 11 10 5 9 8 4 7 6 3 MRFI 5 4 2 3 2 1 1 0 0 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 MHC I MHC II MICA MICB ULBP-1 ULBP-2 ULBP-3 ULBP-4 Molecule Molecule FIGURE 4S FIGURE 5S Panel A Panel B FIGURE 6S A B C D Supplemental Results Table 1S. Modulation by IFN-α of APM in GBM CSC and FBS tumor cell lines. Molecule * Cell line IFN-α‡ HLA β2-m# HLA LMP TAP1 TAP2 class II A A HC§ 2 7 10 080125 CSCs - 1∞ (1) 3 (65) 2 (91) 1 (2) 6 (47) 2 (61) 1 (3) 1 (2) 1 (3) + 2 (81) 11 (80) 13 (99) 1 (3) 8 (88) 4 (91) 1 (2) 1 (3) 2 (68) 080125 FBS - 2 (81) 4 (63) 4 (83) 1 (3) 6 (80) 3 (67) 2 (86) 1 (3) 2 (75) + 2 (99) 14 (90) 7 (97) 5 (75) 7 (100) 6 (98) 2 (90) 1 (4) 3 (87) 080418 CSCs - 2 (51) 1 (1) 1 (3) 2 (47) 2 (83) 2 (54) 1 (4) 1 (2) 1 (3) + 2 (81) 3 (76) 5 (75) 2 (50) 2 (83) 3 (71) 1 (3) 2 (87) 1 (2) 080418 FBS - 1 (3) 3 (70) 2 (88) 1 (4) 3 (87) 2 (76) 1 (3) 1 (3) 1 (2) + 2 (78) 7 (98) 5 (99) 2 (94) 5 (100) 3 (100) 1 (4) 2 (100) 1 (2) 070104 CSCs - 1 (2) 1 (3) 1 (3) 2 (78) 1 (3) 1 (2) 1 (3) 1 (3) 1 (2) + 2 (98) 8 (100) 10 (88) 4 (89) 3 (98) 3 (94) 1 (4) 2 (86) 2 (79) * expression of APM molecules was evaluated by intracellular staining and cytofluorimetric analysis; ‡ cells were treatead or not (+/-) for 72 h with 1000 IU/ml of IFN-α; # β-2 microglobulin; § β-2 microglobulin-free HLA-A heavy chain; ∞ values are indicated as ratio between the mean of fluorescence intensity of cells stained with the selected mAb and that of the negative control; bold values indicate significant MRFI (≥ 2).
    [Show full text]
  • IDENTIFICATION of CELL SURFACE MARKERS WHICH CORRELATE with SALL4 in a B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA with T(8;14)
    IDENTIFICATION of CELL SURFACE MARKERS WHICH CORRELATE WITH SALL4 in a B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA WITH T(8;14) DISCOVERED THROUGH BIOINFORMATIC ANALYSIS of MICROARRAY GENE EXPRESSION DATA The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:38962442 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ,'(17,),&$7,21 2) &(// 685)$&( 0$5.(56 :+,&+ &255(/$7( :,7+ 6$// ,1 $ %&(// $&87( /<03+2%/$67,& /(8.(0,$ :,7+ W ',6&29(5(' 7+528*+ %,2,1)250$7,& $1$/<6,6 2) 0,&52$55$< *(1( (;35(66,21 '$7$ 52%(57 3$8/ :(,1%(5* $ 7KHVLV 6XEPLWWHG WR WKH )DFXOW\ RI 7KH +DUYDUG 0HGLFDO 6FKRRO LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 0DVWHU RI 0HGLFDO 6FLHQFHV LQ ,PPXQRORJ\ +DUYDUG 8QLYHUVLW\ %RVWRQ 0DVVDFKXVHWWV -XQH Thesis Advisor: Dr. Li Chai Author: Robert Paul Weinberg Department of Pathology Candidate MMSc in Immunology Brigham and Womens’ Hospital Harvard Medical School 77 Francis Street 25 Shattuck Street Boston, MA 02215 Boston, MA 02215 IDENTIFICATION OF CELL SURFACE MARKERS WHICH CORRELATE WITH SALL4 IN A B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA WITH TRANSLOCATION t(8;14) DISCOVERED THROUGH BIOINFORMATICS ANALYSIS OF MICROARRAY GENE EXPRESSION DATA Abstract Acute Lymphoblastic Leukemia (ALL) is the most common leukemia in children, causing signficant morbidity and mortality annually in the U.S.
    [Show full text]
  • Supp Material.Pdf
    Legends for Supplemental Figures and Tables Figure S1. Expression of Tlx during retinogenesis. (A) Staged embryos were stained for β- galactosidase knocked into the Tlx locus to indicate Tlx expression. Tlx was expressed in the neural blast layer in the early phase of neural retina development (blue signal). (B) Expression of Tlx in neural retina was quantified using Q-PCR at multiple developmental stages. Figure S2. Expression of p27kip1 and cyclin D1 (Ccnd1) at various developmental stages in wild-type or Tlx-/- retinas. (A) Q-PCR analysis of p27kip1 mRNA expression. (B) Western blotting analysis of p27kip1 protein expression. (C) Q-PCR analysis of cyclin D1 mRNA expression. Figure S3. Q-PCR analysis of mRNA expression of Sf1 (A), Lrh1 (B), and Atn1 (C) in wild-type mouse retinas. RNAs from testis and liver were used as controls. Table S1. List of genes dysregulated both at E15.5 and P0 Tlx-/- retinas. Gene E15.5 P0 Cluste Gene Title Fold Fold r Name p-value p-value Change Change nuclear receptor subfamily 0, group B, Nr0b1 1.65 0.0024 2.99 0.0035 member 1 1 Pou4f3 1.91 0.0162 2.39 0.0031 POU domain, class 4, transcription factor 3 1 Tcfap2d 2.18 0.0000 2.37 0.0001 transcription factor AP-2, delta 1 Zic5 1.66 0.0002 2.02 0.0218 zinc finger protein of the cerebellum 5 1 Zfpm1 1.85 0.0030 1.88 0.0025 zinc finger protein, multitype 1 1 Pten 1.60 0.0155 1.82 0.0131 phospatase and tensin homolog 2 Itgb5 -1.85 0.0063 -1.85 0.0007 integrin beta 5 2 Gpr49 6.86 0.0001 15.16 0.0001 G protein-coupled receptor 49 3 Cmkor1 2.60 0.0007 2.72 0.0013
    [Show full text]
  • Core Transcriptional Regulatory Circuitries in Cancer
    Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage.
    [Show full text]
  • Epcam Intracellular Domain Promotes Porcine Cell
    www.nature.com/scientificreports OPEN EpCAM Intracellular Domain Promotes Porcine Cell Reprogramming by Upregulation Received: 06 December 2016 Accepted: 14 March 2017 of Pluripotent Gene Expression via Published: 10 April 2017 Beta-catenin Signaling Tong Yu*, Yangyang Ma* & Huayan Wang Previous study showed that expression of epithelial cell adhesion molecule (EpCAM) was significantly upregulated in porcine induced pluripotent stem cells (piPSCs). However, the regulatory mechanism and the downstream target genes of EpCAM were not well investigated. In this study, we found that EpCAM was undetectable in fibroblasts, but highly expressed in piPSCs. Promoter ofEpCAM was upregulated by zygotic activated factors LIN28, and ESRRB, but repressed by maternal factors OCT4 and SOX2. Knocking down EpCAM by shRNA significantly reduced the pluripotent gene expression. Conversely, overexpression of EpCAM significantly increased the number of alkaline phosphatase positive colonies and elevated the expression of endogenous pluripotent genes. As a key surface-to- nucleus factor, EpCAM releases its intercellular domain (EpICD) by a two-step proteolytic processing sequentially. Blocking the proteolytic processing by inhibitors TAPI-1 and DAPT could reduce the intracellular level of EpICD and lower expressions of OCT4, SOX2, LIN28, and ESRRB. We noticed that increasing intracellular EpICD only was unable to improve activity of EpCAM targeted genes, but by blocking GSK-3 signaling and stabilizing beta-catenin signaling, EpICD could then significantly stimulate the promoter activity. These results showed that EpCAM intracellular domain required beta- catenin signaling to enhance porcine cell reprogramming. The generation of porcine pluripotent stem cells may not only prove the concept of pluripotency in domestic animals, but also retain the enormous potential for animal reproduction and translational medicine.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.284.609 B2 Tomlins Et Al
    USOO9284609B2 (12) United States Patent (10) Patent No.: US 9.284.609 B2 Tomlins et al. (45) Date of Patent: Mar. 15, 2016 (54) RECURRENT GENE FUSIONS IN PROSTATE 4,683, 195 A 7, 1987 Mullis et al. CANCER 4,683.202 A 7, 1987 Mullis et al. 4,800,159 A 1/1989 Mullis et al. 4,873,191 A 10/1989 Wagner et al. (75) Inventors: Scott Tomlins, Ann Arbor, MI (US); 4,965,188 A 10/1990 Mullis et al. Daniel Rhodes, Ann Arbor, MI (US); 4,968,103 A 1 1/1990 McNab et al. Arul Chinnaiyan, Ann Arbor, MI (US); 5,130,238 A 7, 1992 Malek et al. Rohit Mehra, Ann Arbor, MI (US); 5,225,326 A 7/1993 Bresser 5,270,184 A 12/1993 Walker et al. Mark Rubin New York, NY (US); 5,283,174. A 2/1994 Arnold, Jr. et al. Xiao-Wei Sun, New York, NY (US); 5,283,317. A 2/1994 Saifer et al. Sven Perner, Ellwaugen (DE); Charles 5,399,491 A 3, 1995 Kacian et al. Lee, Marlborough, MA (US); Francesca 5,455,166 A 10/1995 Walker Demichelis, New York, NY (US) 5,480,784. A 1/1996 Kacian et al. s s 5,545,524 A 8, 1996 Trent 5,614,396 A 3/1997 Bradley et al. (73) Assignees: THE BRIGHAMAND WOMENS 5,631, 169 A 5/1997 Lakowicz et al. HOSPITAL, INC., Boston, MA (US); 5,710,029 A 1/1998 Ryder et al. THE REGENTS OF THE 5,776,782 A 7/1998 Tsuji UNIVERSITY OF MICHIGAN, Ann 5,814,447 A 9/1998 Ishiguro et al.
    [Show full text]
  • UTX Regulates Mesoderm Differentiation of Embryonic Stem Cells Independent of H3K27 Demethylase Activity
    UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity Chaochen Wanga, Ji-Eun Leea,1, Young-Wook Chob,1, Ying Xiaoc, Qihuang Jina, Chengyu Liud, and Kai Gea,2 aLaboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; bKorea Basic Science Institute Chuncheon Center, Chuncheon, Kangwon, Korea 200-701; cDermatology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and dTransgenic Core, Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892 Edited by Mark Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved August 3, 2012 (received for review March 9, 2012) To investigate the role of histone H3K27 demethylase UTX in male cells. UTY is a paralog of the X-linked UTX and shares embryonic stem (ES) cell differentiation, we have generated UTX 88% sequence homology with UTX protein. Unlike UTX, UTY knockout (KO) and enzyme-dead knock-in male ES cells. Deletion lacks detectable histone demethlase activity in vitro (8, 12). The of the X-chromosome-encoded UTX gene in male ES cells markedly viability data from male and female UTX KO mice indicate a decreases expression of the paralogous UTY gene encoded by Y largely functional redundancy between UTX and UTY during chromosome, but has no effect on global H3K27me3 level, Hox male embryonic development (13). gene expression, or ES cell self-renewal. However, UTX KO cells UTX has been shown to regulate myocyte differentiation, heart show severe defects in mesoderm differentiation and induction of development, and T-box transcription factor target gene expres- Brachyury, a transcription factor essential for mesoderm develop- sion (13–15).
    [Show full text]
  • Gene Expression Profiles of Estrogen Receptor–Positive and Estrogen Receptor–Negative Breast Cancers Are Detectable in Histologically Normal Breast Epithelium
    Published OnlineFirst November 8, 2010; DOI: 10.1158/1078-0432.CCR-10-1369 Clinical Cancer Human Cancer Biology Research Gene Expression Profiles of Estrogen Receptor–Positive and Estrogen Receptor–Negative Breast Cancers Are Detectable in Histologically Normal Breast Epithelium Kelly Graham1, Xijin Ge4, Antonio de las Morenas2, Anusri Tripathi3, and Carol L. Rosenberg1,2,3 Abstract Purpose: Previously, we found that gene expression in histologically normal breast epithelium (NlEpi) from women at high breast cancer risk can resemble gene expression in NlEpi from cancer-containing breasts. Therefore, we hypothesized that gene expression characteristic of a cancer subtype might be seen in NlEpi of breasts containing that subtype. Experimental Design: We examined gene expression in 46 cases of microdissected NlEpi from untreated women undergoing breast cancer surgery. From 30 age-matched cases [15 estrogen receptor (ER)þ,15ERÀ] we used Affymetryix U133A arrays. From 16 independent cases (9 ERþ,7ERÀ), we validated selected genes using quantitative real-time PCR (qPCR). We then compared gene expression between NlEpi and invasive breast cancer using four publicly available data sets. Results: We identified 198 genes that are differentially expressed between NlEpi from breasts with ERþ (NlEpiERþ) compared with ERÀ cancers (NlEpiERÀ). These include genes characteristic of ERþ and ERÀ cancers (e.g., ESR1, GATA3, and CX3CL1, FABP7). qPCR validated the microarray results in both the 30 original cases and the 16 independent cases. Gene expression in NlEpiERþ and NlEpiERÀ resembled gene expression in ERþ and ERÀ cancers, respectively: 25% to 53% of the genes or probes examined in four external data sets overlapped between NlEpi and the corresponding cancer subtype.
    [Show full text]
  • Speaker Abstracts 2018 International Chordoma Research Workshop | Speaker Abstracts 1
    Sixth International Chordoma Research Workshop Speaker abstracts 2018 International Chordoma Research Workshop | Speaker abstracts 1 TABLE OF CONTENTS EPIGENETIC CONTROL OF BRACHYURY AND METABOLIC STRESS RESPONSE: NOVEL THERAPEUTIC TARGETS FOR CHORDOMA ........................................................................................................................................................... 2 SYSTEMATIC DISCOVERY OF NOVEL VULNERABILITIES IN CHORDOMA .................................................................. 3 RATIONALE FOR THE ADVANCEMENT OF PTEN/AKT PATHWAY INHIBITORS AND COMBINATIONS FOR PERSONALIZED CHORDOMA THERAPY ................................................................................................................... 4 THE ROLE OF PHILANTHROPY IN TRANSFORMING CANCER RESEARCH .................................................................. 5 BRACHYURY IN CHORDOMA AND CARCINOMAS: BIOLOGY AND POTENTIAL TARGETING APPROACHES ............... 6 CHARTING BRACHYURY-MEDIATED DEVELOPMENTAL PATHWAYS DURING EARLY MOUSE EMBRYOGENESIS ...... 7 CRYSTAL STRUCTURES OF BRACHYURY: A PRELUDE TO DRUG DISCOVERY ............................................................ 8 A BRACHYURY TRANSCRIPTIONAL REPORTER TO GUIDE DRUG DISCOVERY........................................................... 9 INVESTIGATING BRACHYURY GENE REGULATION TO IDENTIFY THERAPEUTIC TARGETS IN CHORDOMA ............. 10 DELINEATING AND TARGETING THE BRACHYURY-YAP REGULATORY AXIS IN CANCER ......................................... 11 OPEN ACCESS
    [Show full text]
  • Quantigene Flowrna Probe Sets Currently Available
    QuantiGene FlowRNA Probe Sets Currently Available Accession No. Species Symbol Gene Name Catalog No. NM_003452 Human ZNF189 zinc finger protein 189 VA1-10009 NM_000057 Human BLM Bloom syndrome VA1-10010 NM_005269 Human GLI glioma-associated oncogene homolog (zinc finger protein) VA1-10011 NM_002614 Human PDZK1 PDZ domain containing 1 VA1-10015 NM_003225 Human TFF1 Trefoil factor 1 (breast cancer, estrogen-inducible sequence expressed in) VA1-10016 NM_002276 Human KRT19 keratin 19 VA1-10022 NM_002659 Human PLAUR plasminogen activator, urokinase receptor VA1-10025 NM_017669 Human ERCC6L excision repair cross-complementing rodent repair deficiency, complementation group 6-like VA1-10029 NM_017699 Human SIDT1 SID1 transmembrane family, member 1 VA1-10032 NM_000077 Human CDKN2A cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4) VA1-10040 NM_003150 Human STAT3 signal transducer and activator of transcripton 3 (acute-phase response factor) VA1-10046 NM_004707 Human ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae) VA1-10047 NM_000737 Human CGB chorionic gonadotropin, beta polypeptide VA1-10048 NM_001017420 Human ESCO2 establishment of cohesion 1 homolog 2 (S. cerevisiae) VA1-10050 NM_197978 Human HEMGN hemogen VA1-10051 NM_001738 Human CA1 Carbonic anhydrase I VA1-10052 NM_000184 Human HBG2 Hemoglobin, gamma G VA1-10053 NM_005330 Human HBE1 Hemoglobin, epsilon 1 VA1-10054 NR_003367 Human PVT1 Pvt1 oncogene homolog (mouse) VA1-10061 NM_000454 Human SOD1 Superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))
    [Show full text]