Tyrosinemia Type 1: an Overview of Nursing Care

Total Page:16

File Type:pdf, Size:1020Kb

Tyrosinemia Type 1: an Overview of Nursing Care Continuing Nursing Education Objectives and instructions for completing the evaluation and statements of disclosure can be found on page 67. Tyrosinemia Type 1: An Overview of Nursing Care Elizabeth Barnby umarylacetoacetate hydrolase (FAH) deficiency or tyrosinemia Tyrosinemia type 1 (TT1) is an inherited metabolic disease that can be fatal when type 1 (TT1) is an inherited not detected early by newborn screening. In the past, children with TT1 had a poor metabolic disease that can prognosis due to organ failure and neurologic crisis during infancy. Recent Fcause neurologic crisis and respiratory improvements in newborn screening have changed the prognosis of affected chil- distress. An inborn error of metabo- dren. Measurement of succinylacetone by tandem mass spectrometry provides lism, TT1 is a rare disease with a early identification and the opportunity to manage TT1 as a chronic disease. worldwide incidence of approximate- Treatment includes genetic counseling, dietary management, pharmacotherapy, ly one to two cases per 100,000 births, metabolic crisis prevention, and whole organ transplant. Nursing care is critical to although in some populations, the successful management when it is based on a clear understanding of the patho- incidence is much higher (Scott, physiology. This overview of nursing care will provide specific recommendations to 2006). It is a life-threatening disorder reduce complications and enhance the quality of life for children with TT1. that is usually fatal before two years of age if not treated effectively. Larochelle et al. (1967) described TT1 in infants TT1 (McHugh et al., 2011; Schunemann The deficiency is caused by a mutation presenting with a painful neurologic et al., 2008). When TT1 is identified on chromosome 15q23-25 (Nyhan, disorder that was associated with by enhanced newborn screening Barshop, & Ozand, 2005; Paradis, ascites, liver failure, failure to thrive, methods, the disease is treatable 1996). The disease is an autosomal coagulopathy, rickets, renal disease, (Turgeon et al., 2008). If not identified recessive disorder that is expressed and a cabbage-like odor. Since first on newborn screening, children with when a child receives the trait or described in the Canadian popula- the disease can present critically ill in mutation from both parents. In the tion, much has been learned about metabolic acidosis. Children with carrier state, the mutation is harmless the disease. In the Saguenay Lac-St. inborn errors of metabolism are iden- but can be passed on to offspring. Jean region of Quebec, Canada, the tified post-mortem when newborn An interruption in the tyrosine incidence is approximately one case screening fails to identify the disease catabolic pathway causes a metabolic per 1846 births (De Braekeleer & in the neonate (Bennett & Rinaldo, gridlock in the human body with Larochelle, 1990; Paradis, 1996). 2001; CDC, 2003; Chace et al., 2001). toxic substances accumulating in tis- There is reliable evidence that inborn Early identification and diagnosis are sues throughout the body. Treatment errors of metabolism contribute to life-saving for these metabolically can prevent the accumulation of these incidence of sudden infant death syn- unstable patients. The pediatric nurse toxic substances. The combination of drome (SIDS), although actual num- needs to understand the pathophysi- improvements in newborn screening bers are difficult to quantify (Bennett ology of the disease and nursing inter- and pharmacotherapy has improved & Rinaldo, 2001; Centers for Disease ventions that will improve patient outcomes (Nobili et al., 2010). Control and Prevention [CDC], 2003; outcomes to successfully intervene. The FAH enzyme at the terminal Hunt & Hauck, 2006). An overview of the pathophysiology end of the tyrosine catabolic pathway Mandatory newborn screening and nursing care will enhance out- is crucial to the breakdown of tyro- saves lives, and diagnostic accuracy comes when applied at the bedside. sine. When it is absent, toxic metabo- improves outcomes for children with lites higher up the pathway accumu- Pathophysiology late and cause disease (Scott, King, & Trahms, 2008). Occasionally, a sponta- Elizabeth Barnby, DNP, ACNP-BC, RN, is a TT1 is characterized by the child’s neous mutation can occur that pro- Clinical Assistant Professor and Under - inability to break down tyrosine. duces pockets of normal enzyme activ- graduate Program Director, University of Tyrosine is an essential amino acid ity, and this produces variable pheno- Alabama Huntsville, Huntsville, AL. contained in protein that the body typic expression (Nakamura, Tanaka, Acknowledgment: This work would not have needs to perform cellular functions. Mitsubuchi, & Endo, 2007). Because been possible without the wise guidance of Normally, the enzyme fumarylace- phenotypic expression varies, two Dr. Karen Frith. toacetate hydrolase (FAH) catalyzes children with the exact same chromo- Statements of Disclosure: Please see page tyrosine, but children with TT1 have a somal mutation can have varying 67 for statements of disclosure. deficiency of this essential enzyme. degrees of disease severity. PEDIATRIC NURSING/March-April 2014/Vol. 40/No. 2 61 Tyrosinemia Type 1: An Overview of Nursing Care FAH deficiency leads to an accu- Treatment ness. Succinylacetone inhibits conver- mulation of fumarylacetoacetate, sion of Delta-aminolevulinic acid to maleylacetoacetate, succinylacetoace- Children with TT1 must main- porphobilinogen in the heme synthe- tone, and succinylacetone. Maley - tain strict metabolic control of their sis pathway. Delta-aminolevulinic lacetoacetate causes renal tubular dys- disease. Parents play a key role in acid is neurotoxic. The symptoms are function in a Fanconi-like syndrome metabolic control by maintaining similar to the symptoms of porphyria. of renal failure and vitamin D-resist- dietary restriction of protein con- Lead is also an inhibitor of the con- ant rickets (Jacobs, van Beurden, sumption and avoidance of protein version of Delta-aminolevulinic acid. Klomp, Berger, & van den Berg, 2006). catabolism (Ashorn, Pitkanen, Salo, & Inhibition of the pathway causes neu- Fumarylacetoacetate and maleylace- Heikinheimo, 2006). Typical treat- ropathy, neurologic crisis, paralysis, toacetate cause hepatocyte injury that ment requires intensive developmen- and respiratory distress (Mitchell et can result in end stage liver disease, tally appropriate patient and family al., 1990). Mental retardation and bleeding, and hepatocellular carcino- education. An age-appropriate guide seizure disorders have also been ma (Orejuela, Jorquera, Bergeron, is useful to address these educational reported in children with errors in the Finegold, & Tanguay, 2008). Succiny - needs (see Table 1). metabolism of tyrosine (Palmer, 2006; lacetone is an inhibitor of the heme Avoiding protein catabolism is Rocha et al., 2000). With careful med- synthesis pathway, causing neurotox- difficult in the presence of an acute ical management and nursing care, icity that is similar to lead poisoning viral illness. When unable to eat, the this complication is preventable. The or aminolevulinic acid dehydratase body naturally breaks down protein ability to prevent neurologic deficits (ALAD) deficiency porphyria (Wyllie stores to maintain homeostasis. The offers financial and ethical incentive & Hyams, 2006). The neurotoxicity breakdown of protein causes the level to maintain high quality newborn can cause muscle paralysis and respi- of amino acid tyrosine to rise and screening for the disease (Bailey, ratory arrest (Krous, 2010; Turgeon et results in a metabolic crisis (Claudius, Skinner, & Warren, 2005). al., 2008). Fluharty, & Boles, 2005). Neurologic crisis is preventable if During fasting, the body pro- the family is educated and health care Diagnosis duces ketones. Urine ketones can be providers respond appropriately to used as a metabolic indicator of pro- the metabolic crisis. The most impor- Newborn screening for TT1 is tein catabolism. Ketones are a break- tant way to prevent neurologic crisis performed by tandem mass spectrom- down product of fatty acid metabo- is prompt administration of IV glu- etry. Tandem mass spectrometry is an lism. Ketones in the urine should be cose solutions, usually 10% or higher accurate way to measure newborn managed as an emergency. When depending on severity of symptoms blood spot specimens for the presence ketotic, it is essential for the child to and serum glucose measurement. of disease markers. Each state man- consume glucose to prevent protein Arterial blood gas measurement with dates a different newborn screening catabolism (Claudius et al., 2005). If calculation of anion gap can indicate panel for their population of new- the child is unable, intravenous ther- severity of metabolic acidosis. A writ- borns (Howell, 2009). Most states are apy can prevent complications associ- ten plan is advised for the family to now using the improved newborn ated with increased tyrosine levels. An have with them in the event of an screening test for TT1 that measures antiemetic may be ordered if nausea emergency. The written emergency succinylacetone (Morrissey, Sunny, and vomiting are present. Anti - plan can advise providers of treat- Fahim, Lubowski, & Caggana, 2011). emetics can also be prescribed as ment plans and how to contact med- Measurement of tyrosine is neither needed to prevent future episodes of ical genetics experts for consultation. specific nor sensitive for the identifi- ketosis and adverse outcomes
Recommended publications
  • Newborn Screening Laboratory Manual of Services
    Newborn Screening Laboratory Manual of Services Test Panel: Please see the following links for a detailed description of testing in the Newborn Screening section. Information about the Newborn Screening program is available here. Endocrine Disorders Congenital adrenal hyperplasia (CAH) Congenital hypothyroidism (TSH) Hemoglobinopathies Sickle cell disease (FS) Alpha (Barts) Sickle βeta Thalassemia (FSA) Other sickling hemoglobinopathies such as: FAS FAC FAD FAE Homozygous conditions such as: FC FD FE Metabolic Disorders Biotinidase deficiency Galactosemia Cystic fibrosis (CF) first tier screening for elevated immunoreactive trypsinogen (IRT) Cystic fibrosis second tier genetic mutation analysis on the top 4% IRT concentrations. Current alleles detected : F508del, I507del, G542X, G85E, R117H, 621+1G->T, 711+1G->T, R334W, R347P, A455E, 1717-1G->A, R560T, R553X, G551D, 1898+1G->A, 2184delA, 2789+5G->A, 3120+1G->A, R1162X, 3659delC, 3849+10kbC->T, W1282X, N1303K, IVS polyT T5/T7/T9 *Currently validating a mutation panel that includes the above alleles in addition to the following: 1078delT, Y122X, 394delTT, R347H, M1101K, S1255X, 1898+5G->T, 2183AA->G, 2307insA, Y1092X, 3876delA, 3905insT, S549N, S549R_1645A->C, S549R-1647T->G, S549R-1647T->G, V520F, A559T, 1677delTA, 2055del9->A, 2143delT, 3199del6, 406-1G->A, 935delA, D1152H, CFTRdele2, E60X, G178R, G330X, K710X, L206W, Q493X, Q890X, R1066C, R1158X, R75X, S1196X, W1089X, G1244E, G1349D, G551S, R560KT, S1251N, S1255P Amino acid disorders Phenylketonuria (PKU) / Hyperphenylalaninemia Maple
    [Show full text]
  • Hyperbilirubinemia
    Porphyrins Porphyrins (Porphins) are cyclic tetrapyrol compounds formed by the linkage )). of four pyrrole rings through methenyl bridges (( HC In the reduced porphyrins (Porphyrinogens) the linkage of four pyrrole rings (tetrapyrol) through methylene bridges (( CH2 )) The characteristic property of porphyrins is the formation of complexes with the metal ion bound to nitrogen atoms of the pyrrole rings. e.g. Heme (iron porphyrin). Proteins which contain heme ((hemoproteins)) are widely distributed e.g. Hemoglobin, Myoglobin, Cytochromes, Catalase & Tryptophan pyrrolase. Natural porphyrins have substituent side chains on the eight hydrogen atoms numbered on the pyrrole rings. These side chains are: CH 1-Methyl-group (M)… (( 3 )) 2-Acetate-group (A)… (( CH2COOH )) 3-Propionate-group (P)… (( CH2CH2COOH )) 4-Vinyl-group (V)… (( CH CH2 )) Porphyrins with asymmetric arrangement of the side chains are classified as type III porphyrins while those with symmetric arrangement of the side chains are classified as type I porphyrins. Only types I & III are present in nature & type III series is more important because it includes heme. 1 Heme Biosynthesis Heme biosynthesis occurs through the following steps: 1-The starting reaction is the condensation between succinyl-CoA ((derived from citric acid cycle in the mitochondria)) & glycine, this reaction is a rate limiting reaction in the hepatic heme synthesis, it occurs in the mitochondria & is catalyzed by ALA synthase (Aminolevulinate synthase) enzyme in the presence of pyridoxal phosphate as a cofactor. The product of this reaction is α-amino-β-ketoadipate which is rapidly decarboxylated to form δ-aminolevulinate (ALA). 2-In the cytoplasm condensation reaction between two molecules of ALA is catalyzed by ALA dehydratase enzyme to form two molecules of water & one 2 molecule of porphobilinogen (PBG) which is a precursor of pyrrole.
    [Show full text]
  • TYR I, II, III Act Sheet
    Newborn Screening ACT Sheet Increased Tyrosine Tyrosinemia Differential Diagnosis: Tyrosinemia I (hepatorenal); Tyrosinemia II (oculocutaneous); Tyrosinemia III; transient hypertyrosinemia; liver disease. Condition Description: In the hepatorenal form, tyrosine from ingested protein and phenylalanine metabolism cannot be metabolized by fumarylacetoacetate hydrolase to fumaric acid and acetoacetic acid. The resulting fumarylacetoacetate accumulates and is converted to succinylacetone, the diagnostic metabolite, which is liver toxic, and leads to elevated tyrosine. Tyrosinemias II and III are due to other defects in tyrosine degradation. You Should Take the Following IMMEDIATE Actions • Contact family to inform them of the newborn screening result. • Consult with pediatric metabolic specialist. (See attached list.) • Evaluate the newborn and refer as appropriate. • Initiate confirmatory/diagnostic tests in consultation with metabolic specialist. • Initial testing: plasma quantitative amino acids; urine succinylacetone and liver function tests. • Repeat newborn screen if the second screen has not been done. • Provide family with basic information about tyrosinemia. • Report findings to newborn screening program. Diagnostic Evaluation: Plasma quantitative amino acid analysis will show increased tyrosine in all of the tyrosinemias. Urine organic acid analysis may reveal increased succinylacetone in Tyrosinemia I. Clinical Considerations: Tyrosinemia I is usually asymptomatic in the neonate. If untreated, it will cause liver disease and cirrhosis
    [Show full text]
  • Download This PDF File
    Images in Medicine Liver Injury in a Liver Transplanted Patient B. Geramizadeh Department of Pathology, Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Sections from liver allograft seven days post-transplantation (H&E ×100) five-year-old patient, known case of cirrhosis secondary to tyrosinemia underwent liver transplantation. Liver of the deceased donor—a 20-year-old man who had sustained A head injury in a motor cycle accident—was transferred from another city. The recipient received a segment of the donor’s liver after split liver transplantation. Postoperative period was uneventful. However, seven days post-transplantation, the liver enzymes were still high (ALT: 250 IU/L and ALT: 320 IU/L). Histopathologic examination of the transplanted liver biopsy is shown in the above photomicrograph. The patient improved after two weeks and discharged from the hospital in good condition. WHAT IS YOUR DIAGNOSIS? *Correspondence: Bita Geramizadeh, MD, Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran. PO Box: 71345-1864 Phone/Fax: +98-711-647-4331 E-mail: [email protected] International Journal of Organ Transplantation Medicine B. Geramizadeh DIAGNOSIS: PRESERVATION/REPERFUSION INJURY dvances in organ preservation have duct obstruction. The distinctive pattern of reduced preservation injury. Neverthe- bile ductular cholestasis is that it is usually as- Aless, when storage time exceeds 10 to sociated with sepsis. Drug toxicity can mimic 12 hours, post-transplantation complications, every change in the liver and should always be due to preservation/reperfusion injury, be- excluded [5]. come more common [1]. In our patient, prolonged cold ischemic time Ischemic injury to the graft is divided into (transfer of the liver from another city) and cold ischemia—secondary to prolonged pres- probably small for size graft (split liver trans- ervation—and warm ischemia, which occurs plantation) were predisposing factors.
    [Show full text]
  • What Disorders Are Screened for by the Newborn Screen?
    What disorders are screened for by the newborn screen? Endocrine Disorders The endocrine system is important to regulate the hormones in our bodies. Hormones are special signals sent to various parts of the body. They control many things such as growth and development. The goal of newborn screening is to identify these babies early so that treatment can be started to keep them healthy. To learn more about these specific disorders please click on the name of the disorder below: English: Congenital Adrenal Hyperplasia Esapnol Hiperplasia Suprarrenal Congenital - - http://www.newbornscreening.info/Parents/otherdisorders/CAH.html - http://www.newbornscreening.info/spanish/parent/Other_disorder/CAH.html - Congenital Hypothyroidism (Hipotiroidismo Congénito) - http://www.newbornscreening.info/Parents/otherdisorders/CH.html - http://www.newbornscreening.info/spanish/parent/Other_disorder/CH.html Hematologic Conditions Hemoglobin is a special part of our red blood cells. It is important for carrying oxygen to the parts of the body where it is needed. When people have problems with their hemoglobin they can have intense pain, and they often get sick more than other children. Over time, the lack of oxygen to the body can cause damage to the organs. The goal of newborn screening is to identify babies with these conditions so that they can get early treatment to help keep them healthy. To learn more about these specific disorders click here (XXX). - Sickle Cell Anemia (Anemia de Célula Falciforme) - http://www.newbornscreening.info/Parents/otherdisorders/SCD.html - http://www.newbornscreening.info/spanish/parent/Other_disorder/SCD.html - SC Disease (See Previous Link) - Sickle Beta Thalassemia (See Previous Link) Enzyme Deficiencies Enzymes are special proteins in our body that allow for chemical reactions to take place.
    [Show full text]
  • Tyrosinemia (Type I) – Amino Acid Disorder
    Tyrosinemia (Type I) – Amino Acid Disorder What are amino acid disorders? Kidney disease may lead to rickets, a bone The amino acid disorders are a class of disease. The nerves may also be affected. inherited metabolic conditions that occur when Some babies may have a rapid heart rate, certain amino acids either cannot be broken breathing difficulties, and seizures. down or cannot be produced by the body, Occasionally, individuals with liver damage resulting in the toxic accumulation of some have a higher risk of developing liver cancer. substances and the deficiency of other Acute liver and kidney damage can lead to substances. death. What is tyrosinemia? How is the diagnosis confirmed? In tyrosinemia, the amino acid tyrosine cannot The diagnosis is confirmed by measuring the be broken down properly, leading to a toxic levels of amino acids in the blood and organic accumulation of this amino acid and its acids in the urine. The finding of metabolites in the body. succinylacetone in the urine is diagnostic. Enzyme testing and genetic testing of the FAH What is its incidence? gene may also be used to confirm the Tyrosinemia affects about 1 out every 100,000 diagnosis. Diagnostic testing is arranged by babies born in BC. Although tyrosinemia specialists at BC Children’s Hospital. occurs in all ethnic groups, it is more common in certain populations. Its incidence has been What is the treatment of the disease? reported as high as 1 in 2,000 in the French Children with tyrosinemia are treated with a Canadian population living in the Saguenay- medication called nitisinone (previously called Lac-St-Jean region of Quebec.
    [Show full text]
  • Disorders Alphabetical by Disease Updated 1/2020
    Disorders Alphabetical by Disease updated 1/2020 Disorders Abbreviation Classification Recommended Uniform Screening Panel (RUSP) Classification 2,4 Dienoyl CoA Reductase Deficiency DE RED Fatty Acid Oxidation Disorder Secondary Condition 2-Methyl 3 Hydroxy Butyric Aciduria 2M3HBA Organic Acid Disorder Secondary Condition 2-Methyl Butyryl-CoA Dehydrogenase Deficiency 2MBG Organic Acid Disorder Secondary Condition (called 2-Methylbutyrylglycinuria on RUSP) 3-Hydroxy-3-Methylglutaryl CoA Lyase Deficiency HMG Organic Acid Disorder Core Condition 3-Methylcrotonyl CoA Carboxylase Deficiency 3MCC Organic Acid Disorder Core Condition 3-Methylglutaconic Aciduria 3MGA Organic Acid Disorder Secondary Condition Alpha-Thalassemia (Bart's Hb) Hemoglobin Bart's Hemoglobin Disorder Secondary Conditoin Argininemia, Arginase Deficiency ARG Amino Acid Disorder Secondary Condition Arginosuccinic Aciduria ASA Amino Acid Disorder Core Condition Benign Hyperphenylalaninemia PHE Amino Acid Disorder Secondary Condition Beta-Ketothiolase Deficiency BKT Organic Acid Disorder Core Condition Biopterin Defect in Cofactor Biosynthesis BIOPT (BS) Amino Acid Disorder Secondary Condition Biopterin Defect in Cofactor Regeneration BIOPT (Reg) Amino Acid Disorder Secondary Condition Biotinidase Deficiency BIO Metabolic Disorder of Biotin Recycling Core Condition Carbamoyltransferase Deficiency, Carbamoyl Phosphate Synthetase I Deficiency CPS Amino Acid Disorder Not on RUSP Carnitine Palmitoyl Transferase Deficiency Type 1 CPT I Fatty Acid Oxidation Disorder Secondary Condition
    [Show full text]
  • And L-2-Hydroxyglutaric Acid: Application to the ~Etectionand Prenatal Diagnosis of D- and L-2-Hydroxyglutaric Acidemias
    003 1-3998/93/3403-0277$03.00/0 PEDIATRIC RESEARCH Vol. 34. No. 3. 1993 Copyright 0 1993 International Pediatric Research Foundation, Inc. Prinrc.d in U.S. A. Stable-Isotope Dilution Analysis of D- and L-2-Hydroxyglutaric Acid: Application to the ~etectionand Prenatal Diagnosis of D- and L-2-Hydroxyglutaric Acidemias K. M. GIBSON', H. J. TEN BRINK, D. S. M. SCHOR. R. M. KOK, A. H. BOOTSMA. G. F. HOFFMANN, AND C. JAKOBS D~parrt~lcnrofPc9diutric~, Free Univcrsit!~Ilospitul, ilt~~srcrdut)~,T11eNc>tlrerlunds /K,hf.G., II.J.T.B., D.S.IZ~.S., R.jZ1.K.. A.11. B.. C.J.],and Department of Pedialrics, Univ~rsityof H~idelberg,Gcrmuny /G.I;.II.] ABSTRACT. A stable-isotope dilution assay has been gation on the concentrations of D- and L-2-HG acids in human developed for quantitation of D- and L-2-hydroxyglutaric physiologic fluids. The separation of D- and L-2-HG acid requires acids in physiologic fluids. D- and L-2-hydroxyglutaric the expensive preparation of chiral derivatives using (D)-2-bu- acids are separated as the 0-acetyl-di-(D)-2-butyl esters. tanol, which may account for the lack of detailed analyses of the The method uses ~,~-[3,3,4,4-~H~]-2-hydroxyglutaricacid different configurations in humans (2, 3). as internal standard with ammonia chemical ionization, Since the description of the index patients with D- and L-2- selected ion monitoring gas chromatography-mass spec- HG aciduria (2, 3), a number of patients with 2-HG aciduria trometry. For 13 patients with L-2-hydroxyglutaric acidu- have been reported.
    [Show full text]
  • Diseases Catalogue
    Diseases catalogue AA Disorders of amino acid metabolism OMIM Group of disorders affecting genes that codify proteins involved in the catabolism of amino acids or in the functional maintenance of the different coenzymes. AA Alkaptonuria: homogentisate dioxygenase deficiency 203500 AA Phenylketonuria: phenylalanine hydroxylase (PAH) 261600 AA Defects of tetrahydrobiopterine (BH 4) metabolism: AA 6-Piruvoyl-tetrahydropterin synthase deficiency (PTS) 261640 AA Dihydropteridine reductase deficiency (DHPR) 261630 AA Pterin-carbinolamine dehydratase 126090 AA GTP cyclohydrolase I deficiency (GCH1) (autosomal recessive) 233910 AA GTP cyclohydrolase I deficiency (GCH1) (autosomal dominant): Segawa syndrome 600225 AA Sepiapterin reductase deficiency (SPR) 182125 AA Defects of sulfur amino acid metabolism: AA N(5,10)-methylene-tetrahydrofolate reductase deficiency (MTHFR) 236250 AA Homocystinuria due to cystathionine beta-synthase deficiency (CBS) 236200 AA Methionine adenosyltransferase deficiency 250850 AA Methionine synthase deficiency (MTR, cblG) 250940 AA Methionine synthase reductase deficiency; (MTRR, CblE) 236270 AA Sulfite oxidase deficiency 272300 AA Molybdenum cofactor deficiency: combined deficiency of sulfite oxidase and xanthine oxidase 252150 AA S-adenosylhomocysteine hydrolase deficiency 180960 AA Cystathioninuria 219500 AA Hyperhomocysteinemia 603174 AA Defects of gamma-glutathione cycle: glutathione synthetase deficiency (5-oxo-prolinuria) 266130 AA Defects of histidine metabolism: Histidinemia 235800 AA Defects of lysine and
    [Show full text]
  • A High Urinary Urobilinogen / Serum Total Bilirubin Ratio Reported in Abdominal Pain Patients Can Indicate Acute Hepatic Porphyria
    A High Urinary Urobilinogen / Serum Total Bilirubin Ratio Reported in Abdominal Pain Patients Can Indicate Acute Hepatic Porphyria Chengyuan Song Shandong University Qilu Hospital Shaowei Sang Shandong University Qilu Hospital Yuan Liu ( [email protected] ) Shandong University Qilu Hospital https://orcid.org/0000-0003-4991-552X Research Keywords: acute hepatic porphyria, urinary urobilinogen, serum total bilirubin Posted Date: June 14th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-587707/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/10 Abstract Background: Due to its variable symptoms and nonspecic laboratory test results during routine examinations, acute hepatic porphyria (AHP) has always been a diagnostic dilemma for physicians. Misdiagnoses, missed diagnoses, and inappropriate treatments are very common. Correct diagnosis mainly depends on the detection of a high urinary porphobilinogen (PBG) level, which is not a routine test performed in the clinic and highly relies on the physician’s awareness of AHP. Therefore, identifying a more convenient indicator for use during routine examinations is required to improve the diagnosis of AHP. Results: In the present study, we retrospectively analyzed laboratory examinations in 12 AHP patients and 100 patients with abdominal pain of other causes as the control groups between 2015 and 2021. Compared with the control groups, AHP patients showed a signicantly higher urinary urobilinogen level during the urinalysis (P < 0.05). However, we showed that the higher urobilinogen level was caused by a false- positive result due to a higher level of urine PBG in the AHP patients. Hence, we used serum total bilirubin, an upstream substance of urinary urobilinogen synthesis, for calibration.
    [Show full text]
  • Tyrosinemia Type I and Reversible Neurogenic Crisis After a One-Month Interruption of Nitisinone
    J Pediatr Res 2018;5(Supple 1):57-9 DO I: 10.4274/jpr42275 Case Report Tyrosinemia Type I and Reversible Neurogenic Crisis After a One-Month Interruption of Nitisinone Havva Yazıcı1, Ebru Canda1, Esra Er1, Mehmet Arda Kılınç2, Sema Kalkan Uçar1, Bülent Karapınar2, Mahmut Çoker1 1Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatrics Metabolism and Nutrition, İzmir, Turkey 2Ege University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Intensive Care Unit, İzmir, Turkey ABS TRACT Hereditary tyrosinemia Type I (HTI) is an autosomal recessive disorder due to a deficiency of the enzyme fumarylacetoacetate hydrolase. The liver is the primary organ that is affected and comorbidities with renal and neurologic systems and hepatocellular carcinoma can be seen as a long-term complication. An effective treatment has been available with 2-[2-nitro-4-trifluoromethylbenzoyl]-1,3-cyclohexanedione (NTBC) since 1992. Neurogenic crises do not take place in HTI patients who are treated with NTBC. Here, we report on a seven-year-old boy who underwent a severe neurological crisis including anorexia, vomiting, weakness, hyponatremia, paresthesia and paralysis of the extremities, seizure and arterial hypertension after an interruption of NTBC treatment. With the re-introduction of NTBC, the patient gradually reacquired normal neurological functions, normal blood pressure and recovered completely. Keywords: Tyrosinemia Type I, neurogenic crises, nitisinone Introduction effective within hours, eradicating hepatic and neurological findings and protecting from the risk of hepatocellular Hereditary tyrosinemia Type I (HTI) (OMIM 276700) carcinoma when treatment starts within the first months of is a rare inborn error of the tyrosine metabolism due to life (3).
    [Show full text]
  • Transient Tyrosinemia Resolves Within a Month Or Two of Birth Or Vitamin C Supplements for a Few Days Will Shorten the Time
    OFFICE OF THE SECRETARY OF STATE ARCHIVES DIVISION BEV CLARNO STEPHANIE CLARK SECRETARY OF STATE INTERIM DIRECTOR A. RICHARD VIAL 800 SUMMER STREET NE DEPUTY SECRETARY OF STATE SALEM, OR 97310 503-373-0701 NOTICE OF PROPOSED RULEMAKING INCLUDING STATEMENT OF NEED & FISCAL IMPACT FILED 08/20/2019 3:26 PM CHAPTER 333 ARCHIVES DIVISION OREGON HEALTH AUTHORITY SECRETARY OF STATE PUBLIC HEALTH DIVISION FILING CAPTION: Update of Newborn Bloodspot Screening rules LAST DAY AND TIME TO OFFER COMMENT TO AGENCY: 09/23/2019 5:00 PM The Agency requests public comment on whether other options should be considered for achieving the rule's substantive goals while reducing negative economic impact of the rule on business. CONTACT: Brittany Hall 800 NE Oregon St. Suite 930 Filed By: 503-449-9808 Portland,OR 97232 Brittany Hall [email protected] Rules Coordinator HEARING(S) Auxilary aids for persons with disabilities are available upon advance request. Notify the contact listed above. DATE: 09/16/2019 TIME: 2:30 PM OFFICER: Staff ADDRESS: Portland State Office Building 800 NE Oregon St. Room 1D Portland, OR 97232 NEED FOR THE RULE(S): The Oregon Health Authority (Authority), Public Health Division, Oregon State Public Health Laboratory's (OSPHL) Northwest Regional Newborn Bloodspot Screening Program (NWRNBS Program) is proposing permanent amendments to administrative rules in chapter 333, division 24 pertaining to newborn screening to update and clarify rules. The proposed rule amendments update the rules regarding the definition of terms used, timing for collecting specimens, methods of testing and the retention of residual specimens. In addition, the proposed rule amendments include housekeeping edits and update the reference to the Oregon Newborn Bloodspot Screening Practitioner’s Manual throughout the rules.
    [Show full text]