Use of Anticoagulants in Diagnostic Laboratory Investigations

Total Page:16

File Type:pdf, Size:1020Kb

Use of Anticoagulants in Diagnostic Laboratory Investigations WHO/DIL/LAB/99.1 Rev.2 Original :ENGLISH Distr.:GENERAL WORLD HEALTH ORGANIZATION USE OF ANTICOAGULANTS IN DIAGNOSTIC LABORATORY INVESTIGATIONS 2002 WHO/DIL/LAB/99.1 Rev.2 Page 2 © World Health Organization This document is not a formal publication of the World Health Organization (WHO), but all rights are reserved by the Organization. The document may, however, be freely reviewed, abstracted, reproduced or translated, in part or in whole, but not for sale or for use in conjunction with commercial purposes. The views expressed by named authors are solely the responsibility of those authors. WHO/DIL/LAB/99.1 Rev.2 Original :ENGLISH Distr.:GENERAL USE OF ANTICOAGULANTS IN DIAGNOSTIC LABORATORY INVESTIGATIONS & Stability of blood, plasma and serum samples Contributors: G. Banfi, Milan, Italy H. Kitta, Usingen, Germany K. Bauer, Vienna, Austria D. Klahr, Tuttlingen, Germany W.Brand, Nümbrecht, Germany D. Kolpe, Nümbrecht-Elsenroth, Germany M.Buchberger, Kremsmünster, Austria J. Kukuk, Limburg, Germany A. Deom, Geneva, Switzerland T. Kunert-Latus, Leuven, Belgium W.Ehret, Augsburg, Germany* M.Lammers, Marburg, Germany W.D. Engel, Mannheim, Germany E.A. Leppänen, Helsinki, Finland F. da Fonseca-Wollheim, Berlin, Germany* P. Mikulcik, Fernwald, Germany C.G. Fraser, Dundee, Scotland S. Narayanan, New York, USA V.J. Friemert, Deisenhofen, Germany M. Neumaier, Hamburg, Germany S. Golf, Giessen, Germany M.A. Peça Amaral Gomes, Lisbon, Portugal H.Gross, Hanau, Germany R. Probst, Munich, Germany W.G. Guder, München ,Germany** Y. Schmitt Darmstadt, Germany* G. Gunzer, Clare, Ireland O. Sonntag, Neckargemünd, Germany P. Hagemann, Zürich, Switzerland G. Töpfer, Görlitz, Germany* W. Heil, Wuppertal, Germany* R. Weisheit, Penzberg, Germany J. Henny, Nancy, France H. Wisser, Stuttgart, Germany* R. Hinzmann, Krefeld Germany B. Zawta, Mannheim, Germany* P. Hyltoft Persen, Odense, Denmark R. Zinck Mannheim, Germany G. Hoffmann, Grafrath, Germany ------------------------------------------- A. Kallner, Stockholm, Sweden * Member of working group A. Karallus, Heidelberg, Germany ** Chairman of working group WHO/DIL/LAB/99.1 Rev.2 Page 4 WHO/DIL/LAB/99.1 Rev. 2 Page 2 The WHO document "Use of Anticoagulants in Diagnostic Laboratory Investigations" (WHO/DIL/LAB/99.1 Rev. 1) received a surprising resonance and experts around the world provided many additional observations. This information has been included in the 2nd revision of the document. The document provides an extensive summary of observations on the effects of anticoagulants in blood, plasma and serum. Information on the effects of haemolysis, hyperbilirubinaemia and hyperlipoproteinaemia on measurement procedures has been added. WHO is grateful for the efforts made by the group of experts in collecting all the information necessary for this revised version. Geneva, 15 January 2002 WHO/DIL/LAB/99.1 Rev.2 Page 3 Contents 1 Serum, Plasma or Whole Blood? Which Anticoagulants to Use? 5 1.1 Definitions.............................................................................................................................................5 1.1.1 Whole blood............................................................................................................................5 1.1.2 Plasma ......................................................................................................................................5 1.1.3 Serum........................................................................................................................................5 1.1.4 Anticoagulants ........................................................................................................................5 1.2 Plasma or serum?..................................................................................................................................6 1.2.1 Advantages of using plasma .................................................................................................6 1.2.2 Disadvantages of plasma over serum..................................................................................6 1.2.3 Analytical samples in the serological diagnosis of infectious diseases ........................7 1.3 Recommendations................................................................................................................................7 1.3.1 Sample collection and transport time ..................................................................................7 1.3.2 Centrifugation.........................................................................................................................7 1.3.3 Storage .....................................................................................................................................8 1.3.4 Evaluation of new analytical procedures ...........................................................................8 2 The Optimal Sample Volume 8 2.1 Definition...............................................................................................................................................8 2.2 Recommendations................................................................................................................................9 2.2.1 Measures which can help to reduce the required blood volume.....................................9 2.2.2 Documentation........................................................................................................................9 3 Analyte Stability in Sample Matrix 9 3.1 Stability and Instability .....................................................................................................................10 3.2 Quality assurance of the time delay during the pre-analytical phase........................................10 3.2.1 Transport time .......................................................................................................................10 3.2.2 Pre-analytical time in the laboratory.................................................................................10 3.2.3 Documentation......................................................................................................................10 3.2.4 Actions to be taken when the maximum permissible pre-analytical times are exceeded ................................................................................................................................10 4 The Haemolytic, Icteric and Lipaemic Sample 11 4.1 Definition of a clinically relevant interference..............................................................................11 4.2 General recommendations................................................................................................................11 4.2.1 Documentation of interferences.........................................................................................11 4.2.2 Detection of a potentially interfering property and handling of sample and request............................................................................................................................12 4.2.3 Reporting results ..................................................................................................................12 4.3 The haemolytic sample and the effect of therapeutic haemoglobin derivatives......................12 4.3.1 Haemolysis ............................................................................................................................12 4.3.2 Haemoglobin based oxygen carriers used as blood substitutes ...................................12 WHO/DIL/LAB/99.1 Rev. 2 Page 4 4.3.3 Detection and measurement of haemoglobin in serum or plasma ...............................13 4.3.4 Distinction between in-vivo haemolysis and in-vitro haemolysis .............................13 4.3.5 Mechanisms of interference by haemolysis .....................................................................13 4.3.6 Means to avoid haemolysis and its interferences ...........................................................14 4.3.7 Reaction upon the receipt of haemolytic samples ..........................................................14 4.4 The Lipaemic Sample ........................................................................................................................15 4.4.1 Definition...............................................................................................................................15 4.4.2 Causes of lipaemia (turbidity)............................................................................................15 4.4.3 Identification and quantification of lipaemia...................................................................15 4.4.4 Mechanisms of the interference by lipaemia on analytical methods ..........................15 4.4.5 Means to avoid lipaemia and interferences caused by turbidity ..................................16 4.4.6 Recommendation..................................................................................................................17 4.4.7 Test of interference by lipaemia.........................................................................................17 4.5 The icteric sample ..............................................................................................................................17 4.5.1 Appearance of different bilirubin species ........................................................................17 4.5.2 Mechanisms of bilirubin interference...............................................................................17 4.5.3 Detection
Recommended publications
  • Enoxaparin Sodium Solution for Injection, Manufacturer's Standard
    PRODUCT MONOGRAPH INCLUDING PATIENT MEDICATION INFORMATION PrLOVENOX® Enoxaparin sodium solution for injection 30 mg in 0.3 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 40 mg in 0.4 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 60 mg in 0.6 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 80 mg in 0.8 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 100 mg in 1 mL solution (100 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 300 mg in 3 mL solution (100 mg/mL), multidose vials for subcutaneous or intravenous injection PrLOVENOX® HP Enoxaparin sodium (High Potency) solution for injection 120 mg in 0.8 mL solution (150 mg/mL), pre-filled syringes for subcutaneous or intravenous injection 150 mg in 1 mL solution (150 mg/mL), pre-filled syringes for subcutaneous or intravenous injection Manufacturer’s standard Anticoagulant/Antithrombotic Agent ATC Code: B01AB05 Product Monograph – LOVENOX (enoxaparin) Page 1 of 113 sanofi-aventis Canada Inc. Date of Initial Approval: 2905 Place Louis-R.-Renaud February 9, 1993 Laval, Quebec H7V 0A3 Date of Revision September 7, 2021 Submission Control Number: 252514 s-a version 15.0 dated September 7, 2021 Product Monograph – LOVENOX (enoxaparin) Page 2 of 113 TABLE OF CONTENTS Sections or subsections that are not applicable at the time of authorization are not listed. TABLE OF CONTENTS ..............................................................................................................
    [Show full text]
  • Association Between ABO and Duffy Blood Types and Circulating Chemokines and Cytokines
    Genes & Immunity (2021) 22:161–171 https://doi.org/10.1038/s41435-021-00137-5 ARTICLE Association between ABO and Duffy blood types and circulating chemokines and cytokines 1 2 3 4 5 6 Sarah C. Van Alsten ● John G. Aversa ● Loredana Santo ● M. Constanza Camargo ● Troy Kemp ● Jia Liu ● 4 7 8 Wen-Yi Huang ● Joshua Sampson ● Charles S. Rabkin Received: 11 February 2021 / Revised: 30 April 2021 / Accepted: 17 May 2021 / Published online: 8 June 2021 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021, corrected publication 2021 Abstract Blood group antigens are inherited traits that may play a role in immune and inflammatory processes. We investigated associations between blood groups and circulating inflammation-related molecules in 3537 non-Hispanic white participants selected from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Whole-genome scans were used to infer blood types for 12 common antigen systems based on well-characterized single-nucleotide polymorphisms. Serum levels of 96 biomarkers were measured on multiplex fluorescent bead-based panels. We estimated marker associations with blood type using weighted linear or logistic regression models adjusted for age, sex, smoking status, and principal components of p 1234567890();,: 1234567890();,: population substructure. Bonferroni correction was used to control for multiple comparisons, with two-sided values < 0.05 considered statistically significant. Among the 1152 associations tested, 10 were statistically significant. Duffy blood type was associated with levels of CXCL6/GCP2, CXCL5/ENA78, CCL11/EOTAXIN, CXCL1/GRO, CCL2/MCP1, CCL13/ MCP4, and CCL17/TARC, whereas ABO blood type was associated with levels of sVEGFR2, sVEGFR3, and sGP130.
    [Show full text]
  • The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of the American College of Cardiology providedVol. by 41, Elsevier No. 4 - SupplPublisher S Connector © 2003 by the American College of Cardiology Foundation ISSN 0735-1097/03/$30.00 Published by Elsevier Science Inc. PII S0735-1097(02)02687-6 The Evolving Role of Direct Thrombin Inhibitors in Acute Coronary Syndromes John Eikelboom, MBBS, MSC, FRACP, FRCPA,* Harvey White, MB, CHB, DSC, FRACP, FACC,† Salim Yusuf, MBBS, DPHIL, FRCP (UK), FRCPC, FACC‡ Perth, Australia; Auckland, New Zealand; and Hamilton, Ontario, Canada The central role of thrombin in the initiation and propagation of intravascular thrombus provides a strong rationale for direct thrombin inhibitors in acute coronary syndromes (ACS). Direct thrombin inhibitors are theoretically likely to be more effective than indirect thrombin inhibitors, such as unfractionated heparin or low-molecular-weight heparin, because the heparins block only circulating thrombin, whereas direct thrombin inhibitors block both circulating and clot-bound thrombin. Several initial phase 3 trials did not demonstrate a convincing benefit of direct thrombin inhibitors over unfractionated heparin. However, the Direct Thrombin Inhibitor Trialists’ Collaboration meta-analysis confirms the superiority of direct thrombin inhibitors, particularly hirudin and bivalirudin, over unfractionated heparin for the prevention of death or myocardial infarction (MI) during treatment in patients with ACS, primarily due to a reduction in MI (odds ratio, 0.80; 95% confidence interval, 0.70 to 0.91) with little impact on death. The absolute risk reduction in the composite of death or MI at the end of treatment (0.8%) was similar at 30 days (0.7%), indicating no loss of benefit after cessation of therapy.
    [Show full text]
  • Coagulation Testing: High Hematocrit-Anticoagulant Adjustment
    PREANALYTIC PULSE Coagulation Testing: High Hematocrit-Anticoagulant Adjustment In 1980, CLSI released H21-A4 guidelines for coagulation testing, which included the recommendation to adjust/correct the amount of citrate in blue-top evacuated blood collection tubes for patients presenting hematocrits greater than 55%. In addition to the CLSI guidelines, the CAP hematology checklist HEM.22830 includes the question, “Are there documented guidelines for the detection and special handling of specimens with elevated hematocrits?” Principle The adjustment is to assure the plasma:anticoagulant ratio (not the blood:anticoagulant ratio) stays consistent. A patient with high hematocrit, greater than 55%, will result in less plasma after centrifugation. The plasma fraction will contain an increased concentration of sodium citrate anticoagulant. The increased concentration may result in falsely prolonged test results for Prothrombin Time (PT) and Activated Partial Thromboplastin Time (aPTT). Formula 1. To calculate the corrected 3.2% sodium citrated whole blood for hematocrit > 55%, adjust the citrate to the proper volume with the following formula: -3 C = (1.85 x 10 )(100-HCT)(Vblood) Where: C = volume of sodium citrate required for that volume of blood HCT = patient’s hematocrit V = volume of blood required in the blood collection tube (example if a 3mL tube is used the blood draw volume is 2.7mL) 1.85 x 10-3 is a constant (considering the citrate volume, blood volume, and citrate concentration). 2. Example: Patient has a Hct of 60% and the patient’s blood will be drawn into a 3mL VACUETTE® sodium citrate (blue-top) blood collection tube. Adjustment of the sodium citrate volume is calculated as: C = (1.85 x 10-3)(100-60)(2.7mL) C = 0.20mL (rounded up from 01.998mL) Remove: 0.30 - 0.20 = 0.10mL of sodium citrate to be removed (0.30 is the difference between the total tube volume of 3.0mL and the blood drawn into the tube of 2.7mL) Method The instructions to prepare an adjusted sodium citrate tube are to be documented in the Laboratory Standard Operating Procedures.
    [Show full text]
  • Guidelines for Transfusion and Patient Blood Management, and Discuss Relevant Transfusion Related Topics
    Guidelines for Transfusion and Community Transfusion Committee Patient Blood Management Community Transfusion Committee CHAIR: Aina Silenieks, M.D., [email protected] MEMBERS: A.Owusu-Ansah, M.D. S. Dunder, M.D. M. Furasek, M.D. D. Lester, M.D. D. Voigt, M.D. B. J. Wilson, M.D. COMMUNITY Juliana Cordero, Blood Bank Coordinator, CHI Health Nebraska Heart REPRESENTATIVES: Becky Croner, Laboratory Services Manager, CHI Health St. Elizabeth Mackenzie Gasper, Trauma Performance Improvement, Bryan Medical Center Kelly Gillaspie, Account Executive, Nebraska Community Blood Bank Mel Hanlon, Laboratory Specialist - Transfusion Medicine, Bryan Medical Center Kyle Kapple, Laboratory Quality Manager, Bryan Medical Center Lauren Kroeker, Nurse Manager, Bryan Medical Center Christina Nickel, Clinical Laboratory Director, Bryan Medical Center Rachael Saniuk, Anesthesia and Perfusion Manager, Bryan Medical Center Julie Smith, Perioperative & Anesthesia Services Director, Bryan Medical Center Elaine Thiel, Clinical Quality Improvement/Trans. Safety Officer, Bryan Med Center Kelley Thiemann, Blood Bank Lead Technologist, CHI Health St. Elizabeth Cheryl Warholoski, Director, Nebraska Operations, Nebraska Community Blood Bank Jackie Wright, Trauma Program Manager, Bryan Medical Center CONSULTANTS: Jed Gorlin, M.D., Innovative Blood Resources [email protected] Michael Kafka, M.D., LifeServe Blood Center [email protected] Alex Smith, D.O., LifeServe Blood Center [email protected] Nancy Van Buren, M.D., Innovative
    [Show full text]
  • Rtpa) for the Treatment of Hepatic Veno-Occlusive Disease (VOD
    Bone Marrow Transplantation, (1999) 23, 803–807 1999 Stockton Press All rights reserved 0268–3369/99 $12.00 http://www.stockton-press.co.uk/bmt Recombinant tissue plasminogen activator (rtPA) for the treatment of hepatic veno-occlusive disease (VOD) S Kulkarni1, M Rodriguez2, A Lafuente2, P Mateos2, J Mehta1, S Singhal1, R Saso3, D Tait4, JG Treleaven3 and RL Powles1 Departments of 1Medical Oncology, 3Haematology and 4Radiotherapy, Royal Marsden NHS Trust, Sutton, Surrey, UK; and 2Haematology Department, Hospital La Paz, Madrid, Spain Summary: clinical syndrome characterized by hyperbilirubinemia, hepatomegaly and fluid retention,2,3 and results from dam- Seventeen patients who developed hepatic veno-occlus- age to structures in zone 3 of the liver acinus.4 In patients ive disease (VOD) following hematopoietic stem cell who have undergone hematopoietic stem cell transplan- transplantation were treated with recombinant tissue tation, chemoradiotherapy-induced endothelial cell damage plasminogen activator (rtPA) with or without heparin. is likely to be responsible for the pathogenesis of vessel rtPA was started a median of 13 days post transplant obstruction.5 (range 4–35). All patients received rtPA at a dose of 10 Treatment of established VOD has primarily been sup- mg/day as a starting dose, and 12 patients also received portive and any specific measures have resulted in little heparin (1500 U bolus; then 100 U/kg/day as a continu- impact on outcome. Based on the available evidence for ous i.v. infusion). The median number of days of rtPA involvement of hemostatic mechanisms and cytokines in therapy was 2.5 (1–12). The median total serum biliru- the pathogenesis of VOD,6–8 anti-thrombotic and anti-cyto- bin level was 116 mmol/l (range 63–194) at the begin- kine agents have been assessed for their role in treatment.
    [Show full text]
  • Role of Real-Time / Accurate Diagnostic Testing in Patient Blood Management Programs
    ROLE OF REAL-TIME / ACCURATE DIAGNOSTIC TESTING IN PATIENT BLOOD MANAGEMENT PROGRAMS POINT-OF-CARE TESTING “Diagnostic testing is an essential component of Patient Blood Management. The accurate assessment of the true causes of bleeding dysfunction facilitates the employment of evidence based, goal directed therapy to rapidly prevent and treat excess blood loss. “ Sherri Ozawa RN, Clinical Director, Institute of Patient Blood Management, Englewood Hospital Medical Center, Englewood, New Jersey. PATIENT BLOOD MANAGEMENT Interdisciplinary Managing Blood Conservation Anemia Modalities “The timely application of evidence based medical and surgical concepts designed to manage IMPROVED anemia, optimize hemostasis, and PATIENT minimize blood loss in order to OUTCOMES improve patient outcomes.” SABM© 2018 - Society for the Advancement of Blood Management (SABM.org) Optimizing Patient-Centered Coagulation Decision Making Point-of-care testing forms an integral part of PBM, enabling accurate and real-time diagnosis of anemia and bleeding and facilitating precise and targeted hemostatic intervention. 1 Conventional coagulation tests are unable to provide needed information on actual bleeding risk/defects 1, thus delaying appropriate and targeted treatment. Slow turnaround times for laboratory-based conventional coagulation tests are one of the major drivers of empirical treatment regimens, which inevitably result in some patients receiving unnecessary, inappropriate and avoidable transfusions, with associated increased morbidity and mortality, and
    [Show full text]
  • 2D Map of Proteins from Human Renal Stone Matrix and Evaluation of Their Effect on Oxalate Induced Renal Tubular Epithelial Cell Injury ______K.P
    ORIGINAL Article Vol. 39 (1): 128-136, January - February, 2013 doi: 10.1590/S1677-5538.IBJU.2013.01.16 2D map of proteins from human renal stone matrix and evaluation of their effect on oxalate induced renal tubular epithelial cell injury _______________________________________________ K.P. Aggarwal, S. Tandon, S.K. Singh, C. Tandon Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology (KPA, CT, ST), Waknaghat, Solan, HP and Department of Urology, Post Graduate Institute of Medical Education & Research (PGIMER) (SKS), Chandigarh-160012 India ABSTRACT ARTICLE INFO _________________________________________________________ ___________________ Purpose: Proteins constitute a major portion of the organic matrix of human calcium Key words: oxalate (CaOx) renal stones and the matrix is considered to be important in stone for- Urolithiasis; Calcium Oxalate; mation and growth. The present study evaluates the effect of these proteins on oxalate Madin Darby Canine Kidney injured renal epithelial cells accompanied by a 2D map of these proteins. Cells; Electrophoresis, Gel, Materials and Methods: Proteins were isolated from the matrix of kidney stones contai- Two-Dimensional ning CaOx as the major constituent using EGTA as a demineralizing agent. The effect of more than 3kDa proteins from matrix of human renal (calcium oxalate) CaOx stones Int Braz J Urol. 2013; 39: 128-36 was investigated on oxalate induced cell injury of MDCK renal tubular epithelial cells. A __________________ 2D map of >3kDa proteins was also generated followed by protein identification using MALDI-TOF MS. Submitted for publication: Results: The >3kDa proteins enhanced the injury caused by oxalate on MDCK cells. Also, August 14, 2012 the 2D map of proteins having MW more than 3kDa suggested the abundance of proteins __________________ in the matrix of renal stone.
    [Show full text]
  • Transition of Anticoagulants 2019
    Transition of Anticoagulants 2019 Van Hellerslia, PharmD, BCPS, CACP, Brand Generic Clinical Assistant Professor of Pharmacy Practice, Angiomax bivalirudin Temple University School of Pharmacy, Philadelphia, PA Arixtra fondaparinux Bevyxxa betrixaban Pallav Mehta, MD, Assistant Professor of Medicine, Coumadin warfarin Division of Hematology/Oncology, Eliquis apixaban MD Anderson Cancer Center at Cooper, Camden, NJ Fragmin dalteparin Lovenox enoxaparin Reviewer: Kelly Rudd, PharmD, BCPS, CACP, Pradaxa dabigatran Clinical Specialist, Anticoagulation, Bassett Medical Center, Savaysa edoxaban Cooperstown, NY Xarelto rivaroxaban From To Action Apixaban Argatroban/ Wait 12 hours after last dose of apixaban to initiate parenteral anticoagulant. In cases of Bivalirudin/ high bleeding risk, consider omitting initial bolus when transitioning to heparin infusion. Enoxaparin/ Dalteparin/ Fondaparinux/ Heparin Apixaban Warfarin When going from apixaban to warfarin, consider the use of parenteral anticoagulation as a bridge (eg, start heparin infusion or therapeutic enoxaparin AND warfarin 12 hours after last dose of apixaban and discontinue parenteral anticoagulant when INR is therapeutic). Apixaban affects INR so that initial INR measurements during the transition may not be useful for determining the appropriate dose of warfarin. Apixaban Betrixaban, Wait 12 hours from last dose of apixaban to initiate betrixaban, dabigatran, edoxaban, or Dabigatran, rivaroxaban. Edoxaban, or Rivaroxaban Argatroban Apixaban, Start apixaban, betrixaban, dabigatran,
    [Show full text]
  • Plan Your Plate for Kidney Stones (Calcium Oxalate) High and Low Oxalate Foods
    Lunch & Dinner Your diet plan will be customized based on your urine, blood tests and medical conditions when you are followed by a nutritionist Vegetables: Fruit: 1-2 svg 1 cup cooked or 2 cups raw 2 – 3 oz Lean Protein Starches & Grains: 1-2 svg 1 serving with each meal 3x/day Total fluid intake : 3L (quarts)/day Plan Your Plate For Kidney Stones (Calcium Oxalate) High and Low Oxalate Foods Foods Avoid Recommend Foods Avoid Recommend Draft beer Coffee Nuts** Bacon Ovaltine Beer (bottle) Peanuts, almonds, Mayonnaise Cocoa Carbonated soda pecans, cashews Salad dressing Distilled alcohol Chocolate**, Vegetable oils Lemonade Cocoa,** Butter, margarine Wine: red, rose, white Vegetable soup, Coconut Beverages Miscellaneous Buttermilk, Whole, low- Marmalade Jelly or preserves (made with allowed fat or skim milk fruits) Yogurt with allowed Lemon, lime juice fruits Salt, pepper Soy, almond and rice Soups with allowed ingredients, Sugar milk Beets**: tops, roots, Asparagus Currants, red Apple greens Broccoli Dewberries Apricots Collards Carrots Grapes, purple Cherries, red, sour Kale Corn: sweet, white Gooseberries Cranberry juice Leeks Cucumber, peeled Lemon peel** Grape juice Mustard greens Green peas, canned Lime peel** Orange, fruit and juice Okra Lettuce Orange peel** Peaches Parsley** Lima beans Rhubarb** Pears Sweet potato** Parsnips Pineapple, plum, purple Rutabagas Tomato, 1 small, juice Prunes Vegetables Fruits Spinach** Turnips Apple juice Swiss chard** Avocado Banana Watercress** Brussels sprouts Cherries, bing Cauliflower Mangos Cabbage Melons, cantaloupe, cassava honeydew, Mushrooms watermelon Onions Nectarines Peas, green Peaches White potato Pineapple juice Radish Plums, green or yellow Peanut butter Eggs Fruit cake Cornbread Tofu Cheese Soybean crackers** Sponge cake Meat and (if it is processed Beef, lamb or pork Wheat germ** Spaghetti, canned in tomato sauce Meat Starch with Ca, it is Poultry Rice Substitutes allowed in small Fish and shellfish Quinoa amount) Sardines All bread **: very high oxalate Adapted from the ChooseMyPlate.gov .
    [Show full text]
  • Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients
    diseases Article Severity of Anaemia Has Corresponding Effects on Coagulation Parameters of Sickle Cell Disease Patients Samuel Antwi-Baffour 1,* , Ransford Kyeremeh 1 and Lawrence Annison 2 1 Department of Medical Laboratory Sciences, School of Allied Health Sciences, College of Health Sciences, University of Ghana, P.O. Box KB 143 Accra, Ghana; [email protected] 2 Department of Medical Laboratory Sciences, School of Allied Health Sciences, Narh-Bita College, P.O. Box Co1061 Tema, Ghana; [email protected] * Correspondence: s.antwi-baff[email protected] Received: 31 July 2019; Accepted: 18 October 2019; Published: 17 December 2019 Abstract: Sickle cell disease (SCD) is an inherited condition characterized by chronic haemolytic anaemia. SCD is associated with moderate to severe anaemia, hypercoagulable state and inconsistent platelet count and function. However, studies have yielded conflicting results with regards to the effect of anaemia on coagulation in SCD. The purpose of this study was to determine the effect of anaemia severity on selected coagulation parameters of SCD patients. Four millilitres of venous blood samples were taken from the participants (SCD and non-SCD patients) and used for analysis of full blood count and coagulation parameters. Data was analysed using SPSS version-16. From the results, it was seen that individuals with SCD had a prolonged mean PT, APTT and high platelet count compared to the controls. There was also significant difference in the mean PT (p = 0.039), APTT (p = 0.041) and platelet count (p = 0.010) in HbSS participants with severe anaemia. Mean APTT also showed significant difference (p = 0.044) with severe anaemia in HbSC participants.
    [Show full text]
  • Specialty Amphoterics Amphoteric Surfactants Are Known for Being Mild to the Skin and Hair
    Specialty Amphoterics Amphoteric surfactants are known for being mild to the skin and hair. A special class of amphoterics — amphoacetates and amphopropionates — are exceptionally mild, making them great for applications where mildness matters: baby products, gentle cleansers for sensitive skin, or soothing and calming formulations. All of Stepan Company’s Specialty Amphoteric surfactants are: Biodegradable Naturally-derived from plant sources Exceptionally mild — milder than betaines1 Impart conditioning and softening effects to hair and skin AMPHOSOL® 1C Envision Performance • Best foaming profile and viscosity building of Stepan’s Specialty Amphoterics • Milder alternative to betaines without sacrificing performance • Minimally irritating to eyes, even at 16% active AMPHOSOL® 2C Envision Rinsability • Best suited for formulations where mildness and easy rinsing are desired • Non-irritating to eyes at 5% active and non-irritating to skin at 10% active • Application in gentle facial cleansers that won’t irritate the skin and baby washes with the possibility of “no tear” claims AMPHOSOL® 2CSF-AF Envision Salt-Free • Salt-free amphoteric surfactant — no residual sodium chloride or sodium sulfate • Best suited for mild personal care applications where salt or electrolyte levels are of concern • Stable and will foam in high electrolytic or alkaline systems • Free of residual methanol, making it an ideal choice for California Proposition 65-free formulations 1Based on Zein score The “Detox” Effect Chelation Values of Stepan AMPHOSOL Products Chelants, such as EDTA2, are known for their ability to “trap” heavy AMPHOSOLAMPHOSOL 2C 2C metals like iron and calcium. Two of Stepan’s Specialty Amphoteric surfactants demonstrate chelation AMPHOSOLAMPHOSOL 1C 1C abilities, a unique characteristic Tetrasoodium for surfactants.
    [Show full text]