<<

THE

The cell is the smallest unit of living material capable of carrying on all activities necessary for . It is the smallest unit that can remain alive when removed from the living . This has been demonstrated by the removal of cells from and and growing those cells in cell and culture. When placed in a favorable environment and supplied with essential nutrients and organic molecules, cells can be kept alive in isolation in laboratory glassware indefinitely and can be made to grow, to divide and to differentiate.

The cell is made up of molecules, atoms and , just as are non-living things, but the cell is capable of carrying on metabolic processes and is capable of self-replication.

Major cell parts:

Plant, fungi, , and cells are composed of a and the enclosed . Only cells are without a cell wall. Protoplast is the living part of the cell inside the cell wall and includes the and the protoplasm. Protoplasm is the cell contents inside the protoplast and consists of and the nucleus. Cytoplasm is the cell content inside the cell membrane but outside the nucleus. Contains the . Nucleus is composed of nuclear membrane and . Nucleoplasm is the material inside the nucleus.

CELL WALL

Present in plants, algae, bacteria and fungi. Located exterior to the cell membrane. In plants, made predominantly of cellulose & hemicellulose, organized as microfibrils. Pectin present in middle lamella. Pectin helps cement cells together. May also have lignin. May also have suberin.

Primary cell wall - mainly cellulose, with microfibrils arranged at random. Secondary cell wall - much thicker than the primary and deposited in specifically-ordered layers. Pits - thin places in secondary cell wall - allow and dissolved materials to pass between cells. Plasmodesmata - cytoplasmic connections between cells that allow continuous chemical communication between adjacent cells. CELL MEMBRANE (PLASMA MEMBRANE, PLASMALEMMA)

Plasmalemma is composed of a bilayer with phospholipids, glycolipids and cholesterol. Also has embedded in it, which can move around in membranes. Model of membrane structure called "."

Membrane Function: 1) Regulates passage of materials into and out of protoplast. 2) Coordinates synthesis and assembly of cell wall microfibrils. 3) Translates hormonal and environmental signals involved in the control of cell growth and differentiation.

CYTOSKELETON - , , etc.

MICROTUBULES

Long, slender, hollow tubes in the cytoplasm made of tubulin (). Important in maintaining cell shape and in moving cell components (e.g. during ). They are the main strucutral component of cilia and flagella.

MICROFILAMENTS

Smaller than microtubules, not hollow, but are made of protein. Important to cell shape and in moving organelles around in the cell. The microtubules and the microfilaments together form the .

MICROTRABECULAR LATTICE

Slender protein threads that interconnect essentially everything in the cell and anchor it all to the cell membrane. Seems to be actually anchoring the so-called "free" .

MITOCHONDRIA

Site of cellular respiration, ATP synthesis. Each has 2 membranes - smooth outer membrane and an inner membrane which is highly folded forming sheets called cristae. The enzymes (protein molecules) involved in respiration are embedded in these membranes, esp. the inner one. Each membrane is composed of a lipid bilayer. The fluid material inside the inner membrane is called the matrix. RIBOSOMES

Made of 2 subunits. Each subunit is made of protein and rRNA. Ribosomes funtion in protein synthesis. Can bind with mRNA and tRNA. Catalyzes formation of peptide bond between amino acids forming proteins.

ENDOPLASMIC RETICULUM

Structure: Network of fluid filled sacs and tubes, forming a largeinterconnected maze of channels. If ribosomes are not attached, it's called smooth ER (sER), or if ribosomes are attached, it's called rough ER (rER).

Function: (1) Site of membrane synthesis. (2) Serve to anchor enzymes. (3) Serve as storage areas, e.g. and certain proteins. (4) Serve as transport channels. Proteins can be made on ER at ribosomes, shipped across the ER membrane and to site of eventual use or location. (5) Serve to anchor ribosomes (not the only site of anchorage).

GOLGI APPARATUS (DICTYOSOME, GOLGI BODY, GOLGI STACK, GOLGI COMPLEX)

Golgi body funtions as the processing and packaging of the cell. Molecules made in the ER are packaged in little sacs or vesicles that move to the Golgi body, to the forming face. The vesicles fuse with the Golgi stack, get shuttled through the stack and are released on the maturing face.

During the trip through the Golgi body, the molecules within the vesicles get chemically modified. E.g., protein may have a molecule attached to make a glycoprotein. In secretory cells, the vesicles fuse with the cell membrane and dump their contents outside the cell.

MICROBODIES - group of organelles surrounded by only one membrane

Peroxisomes, Glyoxisomes,

PEROXISOMES

Mostly occur in leaf tissue associated with and mitochondria. Participate in photorespiration and help scavenge free radicals. GLYOXISOMES

Have a role in lipid metabolism. Help convert fats to .

LYSOSOME

Lysosomes contain enzymes that can digest or chemically break down proteins, polysaccharides, nucleic acids and . Digest large molecules within the cells to smaller ones that can be used to build whatever the cell needs. Lysosomes don't seem to occur in plants.

PLASTIDS - a group of membrane bound organelles capable of producing , , ,

CHLOROPLAST

Has lamellae (sheets) that extend through the stroma and overlap in sections. The areas where the lamellae overlap the most, so it has the appearance of stacks of membranes are called the grana. The areas where the lamellae are not so tightly stacked, but extend through the stroma between stacks, are called stromal lamellae. In the grana, each lamella is actually shaped like a flattened disc or sac and each fluid- filled disc is called a thylakoid.

Function: site of photosynthetic reactions. involved in amino acid synthesis involved in synthesis

CHROMOPLASTS

Plastids with a disorganized internal structure and lacking chlorophyll. Usually develop by degeneration of chloroplasts. Contain yellow, orange and sometimes red pigments (mostly carotenoids) that give the color to carrots, tomatoes, and some autumn leaves.

LEUCOPLASTS

Colorless plastids, having no pigments. Also have no internal membrane structure, only the outer double membrane. They store starch, lipids, proteins and other food reserves. Starch in potato tubers is stored in .

AMYLOPLASTS

Plastid in which starch is stored, occurring especially in of plants. They seem to have a role in gravity perception, but the mechanism is not well understood.

Vacuole is often very prominent in certain plant cells. It is bound by a single membrane, called a tonoplast, and serves as a storage compartment and to give the cell turgidity. Fluid inside is called the cell sap.

NUCLEUS

The nucleus contains DNA, has 2 membranes forming the nuclear membrane or the nuclear envelope. Nuclear membranes are fused at nuclear pores. In the nucleoplasm are strands of DNA called chromatin. This is DNA from chromosomes as they become spread out in between periods of cell division.

Major functions of nucleus: 1) regulates metabolic activity of cell through protein synthesis 2) stores genetic information and passes it on to newly forming cells

NUCLEOLUS

Small structure within the nucleus. Place where cell makes RNA that helps make up ribosomes.