Recovery Plan for Pima Pineapple Cactus (Coryphantha Scheeri Var
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pollination of Two Species of Ferocactus: Interactions Between Cactus-Specialist Bees and Their Host Plants
Functional Blackwell Publishing, Ltd. Ecology 2005 Pollination of two species of Ferocactus: interactions 19, 727–734 between cactus-specialist bees and their host plants M. E. MCINTOSH Department of Ecology and Evolutionary Biology, 1041 E. Lowell Street; BioSciences West, Room 310, University of Arizona, Tucson, AZ 85721, USA Summary 1. Resolving the controversy over the prevalence of generalization in plant–pollinator interactions requires field studies characterizing the pollination effectiveness of all a plant’s floral visitors. Herein, the pollination effectiveness of all visitors to two species of barrel cactus (Ferocactus) was quantified. 2. Flowers of both species were pollinated almost exclusively by cactus-specialist bees: 99% (F. cylindraceus (Engelm.) Orcutt) and 94% (F. wislizeni (Engelm.) Britt. and Rose) of all seeds produced in this study resulted from cactus bee visits. 3. For F. cylindraceus, the cactus-specialist Diadasia rinconis was the most abundant visitor. For F. wislizeni, three cactus-specialists (including D. rinconis) plus generalists in the family Halictidae (which did not act as pollinators) each accounted for a quarter of all visits. 4. Diadasia rinconis visits to F. wislizeni flowers were more effective (per-visit) than visits by the other two cactus-specialists. 5. Pollen-collecting and nectar-collecting visits were equally effective. Nectar-collecting visits were the most abundant. 6. Apart from the non-pollinating halictids, floral visitors surprisingly did not include commonly co-occurring generalist bees. 7. These data suggest that, just as apparently specialized flowers may be visited by a diverse assemblage of generalists, so apparently generalized flowers may be visited predominantly by specialists, and that these specialists may perform virtually all of the pollination. -
On the Pima County Multi-Species Conservation Plan, Arizona
United States Department of the Interior Fish and ,Vildlife Service Arizona Ecological Services Office 2321 West Royal Palm Road, Suite 103 Phoenix, Arizona 85021-4951 Telephone: (602) 242-0210 Fax: (602) 242-2513 In reply refer to: AESO/SE 22410-2006-F-0459 April 13, 2016 Memorandum To: Regional Director, Fish and Wildlife Service, Albuquerque, New Mexico (ARD-ES) (Attn: Michelle Shaughnessy) Chief, Arizona Branch, Re.. gul 7/to . D'vision, Army Corps of Engineers, Phoenix, Arizona From: Acting Field Supervisor~ Subject: Biological and Conference Opinion on the Pima County Multi-Species Conservation Plan, Arizona This biological and conference opinion (BCO) responds to the Fish and Wildlife Service (FWS) requirement for intra-Service consultation on the proposed issuance of a section lO(a)(l)(B) incidental take permit (TE-84356A-O) to Pima County and Pima County Regional Flood Control District (both herein referenced as Pima County), pursuant to section 7 of the Endangered Species Act of 1973 (U.S.C. 1531-1544), as amended (ESA), authorizing the incidental take of 44 species (4 plants, 7 mammals, 8 birds, 5 fishes, 2 amphibians, 6 reptiles, and 12 invertebrates). Along with the permit application, Pima County submitted a draft Pima County Multi-Species Conservation Plan (MSCP). On June 10, 2015, the U.S. Army Corps of Engineers (ACOE) requested programmatic section 7 consultation for actions under section 404 of the Clean Water Act (CW A), including two Regional General Permits and 16 Nationwide Permits, that are also covered activities in the MSCP. This is an action under section 7 of the ESA that is separate from the section 10 permit issuance to Pima Couny. -
Threatened, Endangered, Candidate & Proposed Plant Species of Utah
TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var. -
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service
Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections. -
Components of Nest Provisioning Behavior in Solitary Bees (Hymenoptera: Apoidea)*
Apidologie 39 (2008) 30–45 Available online at: c INRA/DIB-AGIB/ EDP Sciences, 2008 www.apidologie.org DOI: 10.1051/apido:2007055 Review article Components of nest provisioning behavior in solitary bees (Hymenoptera: Apoidea)* John L. Neff Central Texas Melittological Institute, 7307 Running Rope, Austin, Texas 78731, USA Received 13 June 2007 – Revised 28 September 2007 – Accepted 1 October 2007 Abstract – The components of nest provisioning behavior (resources per cell, transport capacity, trip dura- tion, trips per cell) are examined for a data set derived from the literature and various unpublished studies. While there is a trade-off between transport capacity and trips required per cell, the highest provisioning rates are achieved by bees carrying very large pollen loads at intermediate trip durations. Most solitary bees appear to be either egg or resource limited, so sustained provisioning rates over one cell per day are unusual. Provisioning rate / body size / transport capacity / solitary bees / trip duration 1. INTRODUCTION tradeoffs between provisioning one large cell or two small cells direct, indirect, or nonex- There is a vast literature on the foraging tac- istent? Are provisioning rates related to body tics of bees: what kinds of flowers to visit, how size? long to spend on a flower, how many flowers Provisioning rate is a general term and can in an inflorescence to visit, when to turn, and simply refer to the rate (mass per unit time) so forth. Much of this work is done within a at which foragers bring various food items framework of whether a forager should max- (pollen, nectar, oils, carrion, or whatever) to imize harvesting rate or foraging efficiency their nests. -
Begin Typing Here
December 16, 2013 Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street NE, Room 1A Washington, DC 20426 Re: Sierrita Pipeline Project Draft Environmental Impact Statement Dear Secretary Bose: The Arizona Game and Fish Department (Department), along with the U.S. Fish and Wildlife Service, Buenos Aires National Wildlife Refuge (BANWR), and U.S. Customs and Border Protection, is a cooperating agency with the Federal Energy Regulatory Commission (FERC) for the National Environmental Policy Act (NEPA) analysis of the project. We have participated in the planning and review of this project with the FERC, Sierrita Gas Pipeline LLC (Sierrita), and the other cooperating agencies since early 2012. Although Sierrita has submitted to the FERC a considerable amount of detailed information pertaining to the design, construction, and post- construction restoration of the pipeline, there remains a lack of sufficient detail in some of Sierrita’s plans to engender confidence that the pipeline will not result in unmitigated impacts to wildlife habitat in the Altar Valley. Upon review of the Draft Environmental Impact Statement (EIS), the Department submits for your consideration a number of recommendations we feel would help offset wildlife and habitat impacts that would result if the pipeline is certificated. To aid in your response to comments, this letter is structured such that supporting information for each major comment is presented in descriptive paragraphs with specific actions summarized in bolded, italicized bullets. MITIGATION There is no mitigation proposed for the 376.7 acres of permanent disturbance (i.e., acres of vegetation within the 50-foot-wide permanent ROW or occupied by aboveground facilities). -
Fishhook Barrel Or Biznaga De Agua Ferocactus Wislizeni
ARIZONA-SONORA DESERT MUSEUM PLANT CARE INFORMATION Fishhook Barrel or Biznaga de Agua Ferocactus wislizeni DESCRIPTION: Fishhook Barrel is found throughout the Arizona Upland portion of the Sonoran Desert, and higher into the grasslands and Chihuahuan Desert. It is has a slow to moderate growth rate, up to 5' or more tall, and 2' wide. It has a deeply pleated surface with stout, hooked spines which start red and fade to gray. Blooming begins in July or August and continues for up to 8 weeks. Flowers vary within the species from yellow, orange, red, to coppery. Many insect species visit the flowers, but bees are the main pollinators. Fruit ripen in late fall and winter. The rind is edible and has a lemony taste. The seeds are high in oil. An unusual form, CSSA Yellow Fishhook Barrel, is now available. Not only does it have bright yellow flowers, but the spines are yellow also. RECOMMENDED USE: Accent, container, desert enhancement or revegetation CULTURE: Hardiness: Fishhook barrel is hardy to at least 15oF. Sun tolerance: Full sun or light shade produce the healthiest plants and best flowering. Please note if there is an “S” marked on the pot or box. This denotes which side has been facing south in the nursery. Keep this orientation to prevent sunburning. Whether or not there is an “S”, we recommend that you acclimatize your plant gradually to the sun. Watering and feeding: For potted plants, regular watering during the warm season is required. It can be adapted to unwatered desert conditions in the ground, but will grow faster if given occasional soaks. -
2009 Pinon Canyon Invertebrate Survey Report
"- - 70.096 60.096 50.096 40.096 30.096 20.096 10.096 0.0% Fig. 1 Most abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008. 04% 1 j 0.391> 0.2% 0.1% 0.0% Fig. 2 Least abundant Apiformes species calculated as a proportion of the total abundance of Apiformes in the collection period. Pinon Canyon Maneuver Site, 2008.7 Fig. 3 Most abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 4 Least abundant Carabidae species calculated as a proportion of the total abundance of Carabidae in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 5 Asilidae species abundance calculated as a proportion of the total abundace of Asilidae in the collection period. Pinon Canyon Maneuver Site, 2008. 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% Fig. 6 Butterfly species abundance calculated as a proportion of the total abundance of butterflies in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 7 Most abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 8 Moderately abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. Pinon Canyon Maneuver Site, 2008. Fig. 9 Least abundant Orthoptera species calculated as a proportion of the total abundance of Orthoptera in the collection period. -
The Wonderful World of Cacti. July 7, 2020
OHIO STATE UNIVERSITY EXTENSION Succulents part 1: The wonderful world of cacti. July 7, 2020 Betzy Rivera. Master Gardener Volunteer OSU Extension – Franklin County OHIO STATE UNIVERSITY EXTENSION Succulent plants Are plants with parts that are thickened and fleshy, capacity that helps to retain water in arid climates. Over 25 families have species of succulents. The most representative families are: Crassulaceae, Agavaceae, Aizoaceae, Euphorbiacea and Cactaceae. 2 OHIO STATE UNIVERSITY EXTENSION The Cactaceae family is endemic to America and the distribution extends throughout the continent from Canada to Argentina, in addition to the Galapagos Islands and Antilles Most important centers of diversification (Bravo-Hollis & Sánchez-Mejorada, 1978; Hernández & Godínez, 1994; Arias-Montes, 1993; Anderson, 2001; Guzmán et al., 2003; Ortega- Baes & Godínez-Alvarez, 2006 3 OHIO STATE UNIVERSITY EXTENSION There is an exception — one of the 1,800 species occurs naturally in Africa, Sri Lanka, and Madagascar Rhipsalis baccifera 4 OHIO STATE UNIVERSITY EXTENSION The Cactaceae family includes between ~ 1,800 and 2,000 species whose life forms include climbing, epiphytic, shrubby, upright, creeping or decumbent plants, globose, cylindrical or columnar in shape (Bravo-Hollis & Sánchez-Mejorada, 1978; Hernández & Godínez, 1994; Guzmán et al., 2003). 5 OHIO STATE UNIVERSITY EXTENSION Cacti are found in a wide variety of environments, however the greatest diversity of forms is found in arid and semi-arid areas, where they play an important role in maintaining the stability of ecosystems (Bravo-Hollis & Sánchez-Mejorada, 1978; Hernández & Godínez, 1994; Guzmán et al., 2003). 6 OHIO STATE UNIVERSITY EXTENSION The Cactaceae family are dicotyledonous plants 2 cotyledons Astrophytum myriostigma (common names: Bishop´s cap cactus, bishop’s hat or miter cactus) 7 OHIO STATE UNIVERSITY EXTENSION General Anatomy of a Cactus Cactus spines are produced from specialized structures called areoles, a kind of highly reduced branch. -
Phytochemical Profiling of Coryphantha Macromeris
molecules Article Phytochemical Profiling of Coryphantha macromeris (Cactaceae) Growing in Greenhouse Conditions Using Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry Emmanuel Cabañas-García 1, Carlos Areche 2, Juan Jáuregui-Rincón 1 , Francisco Cruz-Sosa 3,* and Eugenio Pérez-Molphe Balch 1 1 Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, 20131 Aguascalientes, Mexico; [email protected] (E.C.-G.); [email protected] (J.J.-R.); [email protected] (E.P.-M.B.) 2 Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago 7800024, Chile; [email protected] 3 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina C.P., 09340 Ciudad de México, Mexico * Correspondence: [email protected]; Tel.: +52-555-804-4600 (ext. 2846) Academic Editor: Brendan M Duggan Received: 25 January 2019; Accepted: 14 February 2019; Published: 15 February 2019 Abstract: Chromatographic separation combined with mass spectrometry is a powerful tool for the characterization of plant metabolites because of its high sensitivity and selectivity. In this work, the phytochemical profile of aerial and radicular parts of Coryphantha macromeris (Engelm.) Britton & Rose growing under greenhouse conditions was qualitatively investigated for the first time by means of modern ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-PDA-HESI-Orbitrap-MS/MS). The UHPLC-PDA-HESI-Orbitrap-MS/MS analysis indicated a high complexity in phenolic metabolites. In our investigation, 69 compounds were detected and 60 of them were identified. Among detected compounds, several phenolic acids, phenolic glycosides, and organic acids were found. Within this diversity, 26 metabolites were exclusively detected in the aerial part, and 19 in the roots. -
Redalyc.Fruits, Seeds and Germination in Five Species of Globose Cacteae
Interciencia ISSN: 0378-1844 [email protected] Asociación Interciencia Venezuela Loza Cornejo, Sofía; Terrazas, Teresa; López Mata, Lauro Fruits, seeds and germination in five species of globose Cacteae (Cactaceae) Interciencia, vol. 37, núm. 3, marzo, 2012, pp. 197-203 Asociación Interciencia Caracas, Venezuela Available in: http://www.redalyc.org/articulo.oa?id=33922725006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative FRUITS, SEEDS AND GERMINATION IN FIVE SPECIES OF GLOBOSE CACTEAE (CACTACEAE) Sofía Loza-Cornejo, Teresa Terrazas and Lauro López-Mata SUMMARY The morphological characteristics of fruits and seeds, and the weight, and fruit width. Larger fruits with more seeds are ob- germination responses of freshly matured seeds of five species of served for F. histrix, whereas smaller fruits with less weight and Cacteae (Coryphantha bumamma, C. clavata, C. cornifera, Fero- fewer seeds are seen for C. clavata. Seed germination is a rapid cactus histrix and Mammillaria uncinata) were studied at room process and usually starts on the third day. High percentages of temperature under laboratory conditions. The aim of the study germination (>80%) are observed on the sixth day in F. histrix was to record the macro- and micro-morphology of fruits and and M. uncinata. It is concluded that some morphological cha- seeds of these species and to investigate specific requirements racteristics of fruits and seeds can be used to support further for germination. Variance analysis detected significant differen- systematic studies of Cactoideae genera and will contribute new ces (p<0.05) for several variables: number of seeds per fruit, knowledge for their potential use and conservation. -
Cactaceae) with Special Emphasis on the Genus Mammillaria Charles A
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2003 Phylogenetic studies of Tribe Cacteae (Cactaceae) with special emphasis on the genus Mammillaria Charles A. Butterworth Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, and the Genetics Commons Recommended Citation Butterworth, Charles A., "Phylogenetic studies of Tribe Cacteae (Cactaceae) with special emphasis on the genus Mammillaria " (2003). Retrospective Theses and Dissertations. 565. https://lib.dr.iastate.edu/rtd/565 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.